title page

copyright page

To my family, and to Jackie.

Preface

Thisbook isintended for anyonewho wants to become a better Lisp programmer.
It assumes some familiarity with Lisp, but not necessarily extensive programming
experience. The first few chapters contain a fair amount of review. | hope that
these sectionswill be interesting to more experienced Lisp programmers as well,
because they present familiar subjectsin a new light.

It'sdifficult to convey the essence of a programminglanguagein one sentence,
but John Foderaro has come close:

Lisp is a programmable programming language.

There is more to Lisp than this, but the ability to bend Lisp to one's will is a
large part of what distinguishes a Lisp expert from a novice. Aswell as writing
their programs down toward the language, experienced Lisp programmers build
the language up toward their programs. This book teaches how to programin the
bottom-up style for which Lisp isinherently well-suited.

Bottom-up Design

Bottom-up design is becoming more important as software grows in complexity.
Programs today may have to meet specifications which are extremely complex,
or even open-ended. Under such circumstances, the traditional top-down method
sometimes breaks down. In its place there has evolved a style of programming

Vi PREFACE

quite different from what is currently taught in most computer science courses:
a bottom-up style in which a program is written as a series of layers, each one
acting asasort of programming language for the one above. X Windowsand TpX
are examples of programswritten in this style.

Thetheme of thisbook istwofold: that Lispisanatural languagefor programs
written in the bottom-up style, and that the bottom-up style is a natural way to
write Lisp programs. On Lisp will thus be of interest to two classes of readers.
For people interested in writing extensible programs, this book will show what
you candoif you havetheright language. For Lisp programmers, thisbook offers
apractical explanation of how to use Lisp to its best advantage.

The title is intended to stress the importance of bottom-up programming in
Lisp. Instead of just writing your program in Lisp, you can write your own
language on Lisp, and write your program in that.

It is possible to write programs bottom-up in any language, but Lisp is the
most natural vehicle for this style of programming. In Lisp, bottom-up design is
not a specia technique reserved for unusually large or difficult programs. Any
substantial program will be written partly in this style. Lisp was meant from the
start to be an extensible language. The language itself is mostly a collection of
Lisp functions, no different from the ones you define yourself. What's more, Lisp
functions can be expressed as lists, which are Lisp data structures. This means
you can write Lisp functions which generate Lisp code.

A good Lisp programmer must know how to take advantage of this possibility.
Theusual way to do soisby defining akind of operator called a macro. Mastering
macros is one of the most important steps in moving from writing correct Lisp
programs to writing beautiful ones. Introductory Lisp books have room for no
morethan aquick overview of macros: an explanation of what macrosare, together
with a few examples which hint at the strange and wonderful things you can do
with them. Those strange and wonderful thingswill receive special attention here.
One of the aims of this book isto collect in one place al that people have till now
had to |earn from experience about macros.

Understandably, introductory Lisp books do not emphasize the differences
between Lisp and other languages. They have to get their message across to
studentswho have, for the most part, been schooled to think of programsin Pascal
terms. It would only confuse matters to explain that, while defun looks like a
procedure definition, it is actually aprogram-writing program that generates code
which builds afunctional object and indexesit under the symbol given asthefirst
argument.

One of the purposes of this book isto explain what makes Lisp different from
other languages. When | began, | knew that, all other things being equal, | would
much rather write programsin Lisp thanin C or Pascal or Fortran. | knew also that
this was not merely a question of taste. But | realized that if | was actually going

PREFACE Vii

to claim that Lisp wasin some ways a better language, | had better be prepared to
explain why.

When someone asked L ouis Armstrong what jazz was, hereplied “If you have
to ask what jazz is, you'll never know.” But he did answer the question in away:
he showed peoplewhat jazz was. That'soneway to explain the power of Lisp—to
demonstrate techniques that would be difficult or impossible in other languages.
Most books on programming—even books on Lisp programming—deal with the
kinds of programs you could write in any language. On Lisp deals mostly with
the kinds of programs you could only write in Lisp. Extensibility, bottom-up
programming, interactive development, source code transformation, embedded
languages—thisis where Lisp shows to advantage.

In principle, of course, any Turing-equivalent programming language can do
the same things as any other. But that kind of power is not what programming
languages are about. In principle, anything you can do with a programming
language you can do with a Turing machine; in practice, programming a Turing
machineis not worth the trouble.

So when | say that this book is about how to do things that are impossible
in other languages, | don’t mean “impossible”’ in the mathematical sense, but in
the sense that matters for programming languages. That is, if you had to write
some of the programsin this book in C, you might aswell do it by writing aLisp
compiler in C first. Embedding Prolog in C, for example—can you imagine the
amount of work that would take? Chapter 24 shows how to do it in 180 lines of
Lisp.

| hoped to do more than simply demonstrate the power of Lisp, though. | also
wanted to explainwhy Lispisdifferent. Thisturnsout to beasubtle question—too
subtle to be answered with phrases like “symbolic computation.” What | have
learned so far, | havetried to explain as clearly as| can.

Plan of the Book

Since functions are the foundation of Lisp programs, the book begins with sev-
eral chapters on functions. Chapter 2 explains what Lisp functions are and the
possibilities they offer. Chapter 3 then discusses the advantages of functional
programming, the dominant style in Lisp programs. Chapter 4 shows how to use
functions to extend Lisp. Then Chapter 5 suggests the new kinds of abstractions
we can define with functionsthat return other functions. Finally, Chapter 6 shows
how to use functionsin place of traditional data structures.

The remainder of the book deals more with macros than functions. Macros
receive more attention partly because there is more to say about them, and partly
because they have not till now been adequately described in print. Chapters 7—10

viii PREFACE

form a completetutorial on macro technique. By the end of it you will know most
of what an experienced Lisp programmer knows about macros. how they work;
how to define, test, and debug them; when to use macros and when not; the major
types of macros; how to write programs which generate macro expansions, how
macro style differsfrom Lisp style in general; and how to detect and cure each of
the unique problems that afflict macros.

Following this tutorial, Chapters 11-18 show some of the powerful abstrac-
tions you can build with macros. Chapter 11 shows how to write the classic
macros—those which create context, or implement loops or conditionals. Chap-
ter 12 explains the role of macros in operations on generalized variables. Chap-
ter 13 shows how macros can make programs run faster by shifting computation
to compile-time. Chapter 14 introduces anaphoric macros, which allow you to
use pronounsin your programs. Chapter 15 shows how macros provide a more
convenient interface to the function-builders defined in Chapter 5. Chapter 16
shows how to use macro-defining macros to make Lisp write your programs for
you. Chapter 17 discusses read-macros, and Chapter 18, macrosfor destructuring.

With Chapter 19 begins the fourth part of the book, devoted to embedded
languages. Chapter 19 introduces the subject by showing the same program, a
program to answer queries on a database, implemented first by an interpreter
and then as a true embedded language. Chapter 20 shows how to introduce
into Common Lisp programs the notion of a continuation, an object representing
the remainder of a computation. Continuations are a very powerful tool, and
can be used to implement both multiple processes and nondeterministic choice.
Embedding these control structuresin Lisp is discussed in Chapters 21 and 22,
respectively. Nondeterminism, which allows you to write programs as if they
had foresight, sounds like an abstraction of unusual power. Chapters 23 and 24
present two embedded |anguages which show that nondeterminism lives up to its
promise: a complete ATN parser and an embedded Prolog which combined total
about 200 lines of code.

Thefact that these programsare short meansnothinginitself. If youresorted to
writing incomprehensible code, there's no telling what you could do in 200 lines.
The point is, these programs are not short because they depend on programming
tricks, but because they’re written using Lisp the way it's meant to be used. The
point of Chapters 23 and 24 is not how to implement ATNS in one page of code
or Prolog in two, but to show that these programs, when given their most natural
Lisp implementation, simply are that short. The embedded languagesin the latter
chapters provide a proof by example of the twin points with which | began: that
Lisp is a natural language for bottom-up design, and that bottom-up design is a
natural way to use Lisp.

The book concludes with a discussion of object-oriented programming, and
particularly cLos, the Common Lisp Object System. By saving this topic till

PREFACE iX

last, we see more clearly the way in which object-oriented programming is an
extension of ideas already present in Lisp. It is one of the many abstractions that
can be built on Lisp.

A chapter’sworth of notes begins on page 387. The notes contain references,
additional or alternativecode, or descriptionsof aspectsof Lisp not directly related
to the point at hand. Notes are indicated by a small circle in the outside margin,
like this. Thereis also an Appendix (page 381) on packages.

Just as a tour of New York could be atour of most of the world's cultures, a
study of Lisp as the programmabl e programming language draws in most of Lisp
technique. Most of the techniques described here are generally knownin the Lisp
community, but many have not till now been written down anywhere. And some
issues, such asthe proper role of macros or the nature of variable capture, areonly
vaguely understood even by many experienced Lisp programmers.

Examples

Lisp isafamily of languages. Since Common Lisp promises to remain awidely
used dialect, most of theexamplesin thisbook arein Common Lisp. Thelanguage
was originally defined in 1984 by the publication of Guy Steele’s Common Lisp:
the Language (cLTL1). This definition was superseded in 1990 by the publication
of the second edition (cLTL2), which will in turn yield place to the forthcoming
ANS| standard.

Thisbook contains hundreds of examples, ranging from single expressionsto
aworking Prolog implementation. The code in this book has, wherever possible,
been written to work in any version of Common Lisp. Those few exampleswhich
need features not found in cLTL1 implementations are explicitly identified in the
text. Later chapters contain some examples in Scheme. These too are clearly
identified.

The code is available by anonymous FTP from endor . harvard. edu, where
it's in the directory pub/onlisp. Questions and comments can be sent to
onlisp@das.harvard.edu.

Acknowledgements

While writing this book | have been particularly thankful for the help of Robert
Morris. | went to him constantly for advice and was always glad | did. Several
of the examplesin this book are derived from code he originally wrote, including
the version of for on page 127, the version of aand on page 191, match on
page 239, the breadth-first true-choose on page 304, and the Prolog interpreter

X PREFACE

in Section 24.2. In fact, the whole book reflects (sometimes, indeed, transcribes)
conversations |'ve had with Robert during the past seven years. (Thanks, rtm!)

| would also like to give special thanks to David Moon, who read large parts
of the manuscript with great care, and gave me very useful comments. Chapter 12
was completely rewritten at his suggestion, and the example of variable capture
on page 119 is one that he provided.

| was fortunate to have David Touretzky and Skona Brittain as the technical
reviewers for the book. Several sections were added or rewritten at their sugges-
tion. The aternative true nondeterministic choice operator on page 397 is based
on a suggestion by David Toureztky.

Several other people consented to read all or part of the manuscript, including
Tom Cheatham, Richard Draves (who also rewrote alambda and propmacro
back in 1985), John Foderaro, David Hendler, George Luger, Robert Muller,
Mark Nitzberg, and Guy Steele.

I’'m grateful to Professor Cheatham, and Harvard generally, for providing the
facilities used to write this book. Thanks also to the staff at Aiken Lab, including
Tony Hartman, Janusz Juda, Harry Bochner, and Joanne Klys.

The people at Prentice Hall did agreat job. | feel fortunate to have worked
with Alan Apt, a good editor and a good guy. Thanks also to Mona Pompili,
Shirley Michaels, and Shirley McGuire for their organization and good humor.

Theincomparable Gino Lee of the Bow and Arrow Press, Cambridge, did the
cover. Thetree on the cover alludes specifically to the point made on page 27.

Thisbook was typeset using LATEX, alanguage written by L eslie Lamport atop
Donald Knuth's TpX, with additional macros by L. A. Carr, Van Jacobson, and
Guy Steele. The diagrams were done with Idraw, by John Vlissides and Scott
Stanton. The whole was previewed with Ghostview, by Tim Theisen, which is
built on Ghostscript, by L. Peter Deutsch. Gary Bisbee of Chiron Inc. produced
the camera-ready copy.

| owe thanks to many others, including Paul Becker, Phil Chapnick, Alice
Hartley, Glenn Holloway, Meichun Hsu, Krzysztof Lenk, Arman Maghbouleh,
Howard Mullings, Nancy Parmet, Robert Penny, Gary Sabot, Patrick Slaney, Steve
Strassman, Dave Watkins, the Weickers, and Bill Woods.

Most of al, I'dliketo thank my parents, for their example and encouragement;
and Jackie, who taught me what | might have learned if | had listened to them.

| hope reading this book will be fun. Of all the languages | know, | like Lisp
the best, simply because it’'s the most beautiful. This book is about Lisp at its
lispiest. | had funwriting it, and | hope that comes through in the text.

Paul Graham

Contents

1. The Extensible Language 1

11 Design by Evolution 1

12. Programming Bottom-Up 3
13. Extensible Software 5

1.4. Extending Lisp 6

15. Why Lisp (or When) 8

2. Functions 9

2.1 FunctionsasData 9

2.2. Defining Functions 10
2.3. Functional Arguments 13
24. Functions as Properties 15
25. Scope 16

2.6. Closures 17

2.7. Local Functions 21

2.8. Tail-Recursion 22

29. Compilation 24

2.10. Functionsfrom Lists 27

3. Functional Programming 28

3.1 Functional Design 28

32 Imperative Outside-In 33
3.3. Functiona Interfaces 35
34. Interactive Programming 37

4. Utility Functions 40

41. Birth of a Utility 40
4.2, Invest in Abstraction 43
4.3, Operationson Lists 44

Xi

4.4, Search 48

45. Mapping 53

46. /O 56

4.7. Symbolsand Strings 57
48. Density 59

5. Returning Functions 61

5.1 Common Lisp Evolves 61
5.2. Orthogonality 63

53. Memoizing 65

5.4. Composing Functions 66
5.5. Recursion on Cdrs 68

5.6. Recursion on Subtrees 70
5.7. When to Build Functions 75

6. Functions as Representation 76

6.1. Networks 76
6.2. Compiling Networks 79
6.3. Looking Forward 81

7. Macros 82

7.1 How Macros Work 82

7.2. Backquote 84

7.3. Defining Simple Macros 88

7.4. Testing Macroexpansion 91

7.5. Destructuring in Parameter
Lists 93

7.6. A Model of Macros 95

7.7. Macros as Programs 96

Xii CONTENTS

7.8. Macro Style 99

7.9. Dependence on Macros 101
7.10. Macros from Functions 102
7.11. Symbol Macros 105

8. When toUse Macros 106

8.1 When Nothing Else Will
Do 106
8.2. Macro or Function? 109
8.3. Applications for Macros 111

9. Variable Capture 118

9.1 Macro Argument Capture 118

9.2. Free Symbol Capture 119

9.3. When Capture Occurs 121

9.4. Avoiding Capture with Better
Names 125

9.5. Avoiding Capture by Prior
Evaluation 125

9.6. Avoiding Capture with
Gensyms 128

9.7. Avoiding Capture with
Packages 130

9.8. Capturein Other
Name-Spaces 130

99. Why Bother? 132

10. Other Macro Pitfalls 133

10.1. Number of Evaluations 133
10.2. Order of Evaluation 135

10.3. Non-functional Expanders 136
10.4. Recursion 139

11. Classic Macros 143

11.1. Creating Context 143

11.2. Thewith- Macro 147

11.3. Conditiona Evaluation 150

11.4. lteration 154

11.5. Iteration with Multiple
Vaues 158

11.6. Needfor Macros 161

12. Generalized Variables 165
12.1. TheConcept 165

12.2.

12.3.
12.4.
12.5.

The Multiple Evaluation
Problem 167

New Utilities 169

More Complex Utilities 171
Defining Inversions 178

13. Computation at

13.1.
13.2.
13.3.

Compile-Time 181

New Utilities 181
Example: Bezier Curves 185
Applications 186

14. Anaphoric Macros 189

14.1.
14.2.
14.3.

Anaphoric Variants 189
Failure 195
Referential Transparency 198

15. Macros Returning

15.1.
15.2.
15.3.
15.4.

Functions 201

Building Functions 201
Recursion on Cdrs 204
Recursion on Subtrees 208
Lazy Evaluation 211

16. Macro-Defining Macros 213

16.1.
16.2.
16.3.

Abbreviations 213
Properties 216
Anaphoric Macros 218

17. Read-Macros 224

17.1.
17.2.

17.3.
17.4.

Macro Characters 224
Dispatching Macro
Characters 226
Delimiters 227

When What Happens 229

18. Destructuring 230

18.1.
18.2.
18.3.
18.4.

Destructuring on Lists 230
Other Structures 231
Reference 236

Matching 238

19. A Query Compiler 246

CONTENTS Xiii

24.7. Examples 344

19.1. TheDatabase 247

19.2. Pattern-Matching Queries 248
19.3. A Query Interpreter 250

19.4. Redtrictionson Binding 252
19.5. A Query Compiler 254

20. Continuations 258

20.1. Scheme Continuations 258

20.2. Continuation-Passing
Macros 266

20.3. Code-Walkers and CPS
Conversion 272

21. Multiple Processes 275

21.1. The Process Abstraction 275

21.2. Implementation 277

21.3. The Lessthan-Rapid
Prototype 284

22. Nondeterminism 286

22.1. TheConcept 286

222, Search 290

22.3. Scheme Implementation 292

22.4. Common Lisp
Implementation 294

225. Cuts 298

22.6. True Nondeterminism 302

23. Parsing with ATNs 305

23.1. Background 305

23.2. TheFormalism 306
23.3. Nondeterminism 308
23.4. AnATN Compiler 309
235. A SampleATN 314

24. Prolog 321

24.1. Concepts 321

24.2. Anlinterpreter 323

24.3. Rules 329

24.4. The Need for
Nondeterminism 333

24.5. New Implementation 334

24.6. Adding Prolog Features 337

24.8. The Sensesof Compile 346

25. Object-Oriented Lisp 348

25.1. PluscaChange 348

25.2. ObjectsinPlainLisp 349

25.3. Classesand Instances 364

25.4. Methods 368

25.5. Auxiliary Methods and
Combination 374

256. CLOSandLisp 377

25.7. Whento Object 379

The Extensible Language

Not long ago, if you asked what Lisp was for, many people would have answered
“for artificial intelligence” In fact, the association between Lisp and Al isjust an
accident of history. Lisp was invented by John McCarthy, who also invented the
term “artificial intelligence” His students and colleagues wrote their programsin
Lisp, and so it began to be spoken of as an Al language. This line was taken up
and repeated so often during the brief Al boom in the 1980sthat it became almost
aningtitution.

Fortunately, word has begun to spread that Al is not what Lisp is all about.
Recent advances in hardware and software have made Lisp commercialy viable:
itisnow usedin Gnu Emacs, the best Unix text-editor; Autocad, theindustry stan-
dard desktop cAD program; and Interleaf, aleading high-end publishing program.
Theway Lisp isused in these programs has nothing whatever to do with Al.

If Lisp is not the language of Al, what is it? Instead of judging Lisp by the
company it keeps, let’slook at the language itself. What can you do in Lisp that
you can't do in other languages? One of the most distinctive qualities of Lisp is
the way it can be tailored to suit the program being written init. Lispitself isa
Lisp program, and Lisp programs can be expressed as lists, which are Lisp data
structures. Together, these two principles mean that any user can add operatorsto
Lisp which are indistinguishable from the ones that come built-in.

1.1 Design by Evolution

Because Lisp gives you the freedom to define your own operators, you can mold
it into just the language you need. If you're writing a text-editor, you can turn

2 THE EXTENSIBLE LANGUAGE

Lisp into a language for writing text-editors. If you're writing a CAD program,
you can turn Lisp into a language for writing CAD programs. And if you're not
sure yet what kind of program you're writing, it's a safe bet to write it in Lisp.
Whatever kind of program yours turns out to be, Lisp will, during the writing of
it, have evolved into alanguage for writing that kind of program.

If you're not sure yet what kind of program you're writing? To some ears
that sentence has an odd ring to it. It isin jarring contrast with a certain model
of doing things wherein you (1) carefully plan what you're going to do, and then
(2) doit. According to this model, if Lisp encourages you to start writing your
program before you've decided how it should work, it merely encourages sloppy
thinking.

WEell, it just ain't so. The plan-and-implement method may have been a good
way of building dams or launching invasions, but experience has not shown it to
be as good a way of writing programs. Why? Perhaps it's because computers
are so exacting. Perhaps there is more variation between programs than there
is between dams or invasions. Or perhaps the old methods don’'t work because
old concepts of redundancy have no analogue in software devel opment: if a dam
contains 30% too much concrete, that's a margin for error, but if a program does
30% too much work, that is an error.

It may be difficult to say why the old method fails, but that it doesfail, anyone
can see. When is software delivered on time? Experienced programmers know
that no matter how carefully you plan a program, when you write it the plans will
turn out to be imperfect in some way. Sometimes the plans will be hopelessly
wrong. Yet few of the victims of the plan-and-implement method question its
basic soundness. Instead they blame human failings: if only the plans had been
made with more foresight, all this trouble could have been avoided. Since even
the very best programmers run into problems when they turn to implementation,
perhaps it's too much to hope that people will ever have that much foresight.
Perhaps the plan-and-implement method coul d be replaced with another approach
which better suits our limitations.

We can approach programming in a different way, if we have the right tools.
Why do we plan before implementing? The big danger in plunging right into
a project is the possibility that we will paint ourselvesinto a corner. If we had
a more flexible language, could this worry be lessened? We do, and it is. The
flexibility of Lisp has spawned a whole new style of programming. In Lisp, you
can do much of your planning as you write the program.

Why wait for hindsight? As Montaigne found, nothing clarifies your ideas
liketrying to write them down. Onceyou'refreed fromtheworry that you'll paint
yourself into a corner, you can take full advantage of this possibility. The ability
to plan programs as you write them has two momentous consequences. programs
take less time to write, because when you plan and write at the same time, you

1.2 PROGRAMMING BOTTOM-UP 3

have area program to focus your attention; and they turn out better, because the
final design is always a product of evolution. So long as you maintain a certain
discipline while searching for your program’s destiny—so long as you always
rewrite mistaken parts as soon asit becomes clear that they're mistaken—thefinal
product will be a program more elegant than if you had spent weeks planning it
beforehand.

Lisp's versatility makes this kind of programming a practical aternative.
Indeed, the greatest danger of Lisp is that it may spoil you. Once you've used
Lisp for awhile, you may become so sensitive to the fit between language and
application that you won't be able to go back to another language without always
feeling that it doesn't give you quite the flexibility you need.

1.2 Programming Bottom-Up

It's along-standing principle of programming style that the functional elements of
aprogram should not betoo large. If some component of aprogram grows beyond
the stage where it's readily comprehensible, it becomes a mass of complexity
which conceals errors as easily as a big city conceals fugitives. Such software
will be hard to read, hard to test, and hard to debug.

In accordancewith this principle, alarge program must be divided into pieces,
and the larger the program, the more it must be divided. How do you divide
a program? The traditional approach is called top-down design: you say “the
purpose of the program is to do these seven things, so | divideit into seven major
subroutines. The first subroutine has to do these four things, so it in turn will
have four of its own subroutines,” and so on. This process continues until the
whole program has the right level of granularity—each part large enough to do
something substantial, but small enough to be understood as a single unit.

Experienced Lisp programmersdivide up their programs differently. Aswell
as top-down design, they follow a principle which could be called bottom-up
design—changing the language to suit the problem. In Lisp, you don't just write
your program down toward the language, you a so build the language up toward
your program. Asyou’rewriting aprogram you may think “I wish Lisp had such-
and-such an operator.” So you go and write it. Afterward you realize that using
the new operator would simplify the design of another part of the program, and so
on. Language and program evolvetogether. Like the border between two warring
states, the boundary between language and program is drawn and redrawn, until
eventually it comes to rest along the mountains and rivers, the natural frontiers
of your problem. In the end your program will look as if the language had been
designed for it. And when language and program fit one another well, you end up
with code which is clear, small, and efficient.

4 THE EXTENSIBLE LANGUAGE

It's worth emphasizing that bottom-up design doesn’t mean just writing the
same program in a different order. When you work bottom-up, you usually end
up with adifferent program. Instead of asingle, monoalithic program, you will get
alarger language with more abstract operators, and a smaller program written in
it. Instead of alintel, you'll get an arch.

Intypical code, onceyou abstract out the partswhich are merely bookkeeping,
what'sleft is much shorter; the higher you build up the language, the less distance
you will have to travel from the top down to it. This brings several advantages:

1. By making the language do more of the work, bottom-up design yields
programs which are smaller and more agile. A shorter program doesn't
have to be divided into so many components, and fewer components means
programs which are easier to read or modify. Fewer components also
means fewer connections between components, and thus less chance for
errorsthere. Asindustrial designers strive to reduce the number of moving
partsin a machine, experienced Lisp programmers use bottom-up design to
reduce the size and complexity of their programs.

2. Bottom-up design promotes code re-use. When you write two or more
programs, many of the utilities you wrote for the first program will also
be useful in the succeeding ones. Once you've acquired a large substrate
of utilities, writing a new program can take only a fraction of the effort it
would requireif you had to start with raw Lisp.

3. Bottom-up design makes programs easier to read. An instance of this type
of abstraction asks the reader to understand a general -purpose operator; an
instance of functional abstraction asks the reader to understand a special-
purpose subroutine.

4. Because it causes you aways to be on the lookout for patterns in your
code, working bottom-up helps to clarify your ideas about the design of
your program. If two distant components of a program are similar in form,
you'll beled to notice the similarity and perhapsto redesign the programin
asimpler way.

Bottom-up design is possible to a certain degree in languages other than Lisp.
Whenever you see library functions, bottom-up design is happening. However,
Lisp gives you much broader powers in this department, and augmenting the
language plays a proportionately larger role in Lisp style—so much so that Lisp
isnot just adifferent language, but awhole different way of programming.

1“But no one can read the program without understanding all your new utilities” To see why such
statements are usually mistaken, see Section 4.8.

1.3 EXTENSIBLE SOFTWARE 5

It'struethat this style of devel opment is better suited to programswhich can be
written by small groups. However, at the same time, it extends the limits of what
can be done by a small group. In The Mythical Man-Month, Frederick Brooks
proposed that the productivity of a group of programmers does not grow linearly
with its size. As the size of the group increases, the productivity of individual
programmers goes down. The experience of Lisp programming suggests a more
cheerful way to phrasethislaw: asthesize of the group decreases, the productivity
of individual programmers goes up. A small group wins, relatively speaking,
simply because it's smaller. When a small group aso takes advantage of the
techniques that Lisp makes possible, it can win outright.

1.3 Extensible Software

The Lisp style of programming is one that has grown in importance as software
hasgrownin complexity. Sophisticated users now demand so much from software
that we can’t possibly anticipate al their needs. They themselves can't anticipate
al their needs. But if we can’t give them software which does everything they
want right out of the box, we can give them software which is extensible. We
transform our software from a mere program into a programming language, and
advanced users can build upon it the extra features that they need.

Bottom-up design leads naturally to extensible programs. The simplest
bottom-up programs consist of two layers. language and program. Complex
programs may be written as a series of layers, each one acting as a programming
language for the one above. If this philosophy is carried all the way up to the
topmost layer, that layer becomes a programming language for the user. Such
a program, where extensibility permeates every levd, is likely to make a much
better programming language than a system which was written as a traditional
black box, and then made extensible as an afterthought.

X Windows and TEX are early examples of programs based on this principle.
In the 1980s better hardware made possible a new generation of programs which
had Lisp as their extension language. The first was Gnu Emacs, the popular
Unix text-editor. Later came Autocad, thefirst large-scale commercial product to
provide Lisp as an extension language. In 1991 Interleaf released a new version
of its software that not only had Lisp as an extension language, but was largely
implementedin Lisp.

Lispis an especially good language for writing extensible programs because
it isitself an extensible program. If you write your Lisp programs so as to pass
this extensibility on to the user, you effectively get an extension languagefor free.
And the difference between extending a Lisp programin Lisp, and doing the same
thing in atraditional language, is like the difference between meeting someonein

6 THE EXTENSIBLE LANGUAGE

person and conversing by letters. In a program which is made extensible simply
by providing access to outside programs, the best we can hope for is two black
boxes communicating with one another through some predefined channel. In
Lisp, extensions can have direct access to the entire underlying program. Thisis
not to say that you have to give users access to every part of your program—;just
that you now have a choice about whether to give them access or not.

When this degree of access is combined with an interactive environment, you
have extensibility at its best. Any program that you might use as afoundation for
extensionsof your ownislikely to befairly big—too big, probably, for you to have
acomplete mental picture of it. What happenswhen you're unsure of something?
If the original program is written in Lisp, you can probeit interactively: you can
inspect its data structures; you can call its functions; you may even be ableto look
at the original source code. This kind of feedback allows you to program with
a high degree of confidence—to write more ambitious extensions, and to write
them faster. Aninteractive environment always makes programming easier, but it
is nowhere more valuable than when one is writing extensions.

An extensible program is a double-edged sword, but recent experience has
shown that users prefer adoubl e-edged sword to ablunt one. Extensible programs
seem to prevail, whatever their inherent dangers.

14 ExtendingLisp

There are two ways to add new operatorsto Lisp: functionsand macros. In Lisp,
functions you define have the same status as the built-in ones. If you want a new
variant of mapcar, you can define one yourself and use it just as you would use
mapcar. For example, if you want alist of the values returned by some function
whenit is applied to all the integersfrom 1 to 10, you could create anew list and
passit tomapcar:

(mapcar fn
(do* ((x 1 (1+ x))
(result (list x) (push x result)))
((= x 10) (nreverse result))))

but this approach is both ugly and inefficient.? Instead you could define a new
mapping function map1-n (see page 54), and then call it as follows:

(mapl-n fn 10)

2You could write this more elegantly with the new Common Lisp series macros, but that only
proves the same point, because these macros are an extension to Lisp themselves.

14 EXTENDING LISP 7

Defining functionsis comparatively straightforward. Macros provide a more
general, but less well-understood, means of defining new operators. Macros are
programs that write programs. This statement has far-reaching implications, and
exploring them is one of the main purposes of this book.

The thoughtful use of macros leads to programs which are marvels of clarity
and elegance. These gems are not to be had for nothing. Eventually macros will
seem themost natural thingin theworld, but they can be hard to understand at first.
Partly thisis becausethey are moregeneral than functions, sothereismoreto keep
in mind when writing them. But the main reason macros are hard to understand
is that they're foreign. No other language has anything like Lisp macros. Thus
|earning about macros may entail unlearning preconceptionsinadvertently picked
up from other languages. Foremost among these is the notion of a program as
something afflicted by rigor mortis. Why should data structures be fluid and
changeable, but programs not? In Lisp, programs are data, but the implications
of thisfact takeawhileto sink in.

If it takes some time to get used to macros, it is well worth the effort. Evenin
such mundane uses as iteration, macros can make programs significantly smaller
and cleaner. Suppose a program must iterate over some body of code for x from
atob. Thebuilt-in Lisp do is meant for more general cases. For simpleiteration
it does not yield the most readable code:

(do ((x a (+ 1 x)))
(> x b))
(print x))

Instead, suppose we could just say:

(for (x a b)
(print x))

Macros make this possible. With six lines of code (see page 154) we can add for
to the language, just as if it had been there from the start. And as later chapters
will show, writing for is only the beginning of what you can do with macros.

You're not limited to extending Lisp one function or macro at atime. If you
need to, you can build awhole language on top of Lisp, and write your programs
inthat. Lispisan excellent language for writing compilers and interpreters, but
it offers another way of defining a new language which is often more elegant and
certainly much less work: to define the new language as a modification of Lisp.
Then the parts of Lisp which can appear unchanged in the new language (e.g.
arithmetic or 1/0) can be used as is, and you only have to implement the parts
which are different (e.g. control structure). A language implemented in this way
is called an embedded language.

8 THE EXTENSIBLE LANGUAGE

Embedded languages are a natural outgrowth of bottom-up programming.
Common Lisp includes several aready. The most famous of them, cLOS, is
discussed in the last chapter. But you can define embedded languages of your
own, too. You can have the language which suits your program, even if it ends up
looking quite different from Lisp.

15 Why Lisp (or When)

Thesenew possibilities do not stem fromasinglemagicingredient. Inthisrespect,
Lisp is like an arch. Which of the wedge-shaped stones (voussoirs) is the one
that holds up the arch? The question itself is mistaken; they all do. Like an arch,
Lispisacollection of interlocking features. We can list some of these features—
dynamic storage allocation and garbage collection, runtime typing, functions as
objects, abuilt-in parser which generateslists, acompiler which accepts programs
expressed as lists, an interactive environment, and so on—nbut the power of Lisp
cannot be traced to any single one of them. It is the combination which makes
Lisp programming what it is.

Over the past twenty years, the way people program has changed. Many of
these changes—interactive environments, dynamic linking, even object-oriented
programming—have been piecemeal attempts to give other languages some of
the flexibility of Lisp. The metaphor of the arch suggests how well they have
succeeded.

It is widely known that Lisp and Fortran are the two oldest languages still in
use. What is perhaps more significant is that they represent opposite polesin the
philosophy of language design. Fortran was invented as a step up from assembly
language. Lisp was invented as a language for expressing algorithms. Such
different intentionsyielded vastly different languages. Fortran makeslife easy for
the compiler writer; Lisp makeslife easy for the programmer. Most programming
languages since have fallen somewhere between the two poles. Fortran and Lisp
have themselves moved closer to the center. Fortran now looks more like Algal,
and Lisp has given up some of the wasteful habits of its youth.

The original Fortran and Lisp defined a sort of bettlefield. On one side the
battle cry is “Efficiency! (And besides, it would be too hard to implement.)” On
the other side, the battle cry is “Abstraction! (And anyway, thisisn’t production
software.)” As the gods determined from afar the outcomes of battles among the
ancient Greeks, the outcome of this battleis being determined by hardware. Every
year, things look better for Lisp. The arguments against Lisp are now starting to
sound very much like the arguments that assembly language programmers gave
against high-level languages in the early 1970s. The question is now becoming
not Why Lisp?, but When?

Functions

Functions are the building-blocks of Lisp programs. They are aso the building-
blocks of Lisp. In most languages the + operator is something quite different
from user-defined functions. But Lisp has asingle model, function application, to
describe all the computation done by aprogram. The Lisp + operator isafunction,
just like the ones you can define yourself.

In fact, except for a small number of operators called special forms, the core
of Lispisacoallection of Lisp functions. What's to stop you from adding to this
collection? Nothing at all: if youthink of something you wish Lisp could do, you
can write it yourself, and your new function will be treated just like the built-in
ones.

This fact has important consequences for the programmer. 1t means that any
new function could be considered either as an addition to Lisp, or as part of a
specific application. Typically, an experienced Lisp programmer will write some
of each, adjusting the boundary between language and application until the two
fit one another perfectly. This book is about how to achieve a good fit between
language and application. Since everything we do toward this end ultimately
depends on functions, functions are the natural place to begin.

2.1 FunctionsasData

Two things make Lisp functions different. One, mentioned above, is that Lisp
itself isacollection of functions. Thismeansthat we can addto Lisp new operators
of our own. Another important thing to know about functionsisthat they are Lisp
objects.

10 FUNCTIONS

Lisp offers most of the data types one finds in other languages. We get
integers and floating-point numbers, strings, arrays, structures, and so on. But
Lisp supports one data type which may at first seem surprising: the function.
Nearly all programming languages provide some form of function or procedure.
What does it mean to say that Lisp providesthem as adatatype? It meansthat in
Lisp we can do with functions all the things we expect to do with more familiar
datatypes, likeintegers: create new onesat runtime, storetheminvariablesandin
structures, pass them as arguments to other functions, and return them as results.

The ability to create and return functions at runtime is particularly useful.
This might sound at first like a dubious sort of advantage, like the self-modifying
machine language programs one can run on some computers. But creating new
functions at runtime turns out to be aroutinely used Lisp programming technique.

2.2 Defining Functions

Most peoplefirst learn how to make functionswith defun. Thefollowing expres-
sion defines afunction called double which returnstwice its argument.

> (defun double (x) (* x 2))
DOUBLE

Having fed this to Lisp, we can call double in other functions, or from the
toplevel:

> (double 1)
2

A file of Lisp code usually consists mainly of such defuns, and so resembles a
file of procedure definitions in alanguage like C or Pascal. But something quite
different is going on. Those defuns are not just procedure definitions, they're
Lisp calls. This distinction will become clearer when we see what’s going on
underneath defun.

Functionsare objectsin their own right. What defun really doesisbuild one,
and store it under the name given as the first argument. So as well as calling
double, we can get hold of the function which implementsit. The usual way to
do soishby using the #’ (sharp-quote) operator. This operator can be understood
as mapping namesto actua function objects. By affixingit to the name of double

> #’double
#<Interpreted-Function C66ACE>

we get the actual object created by the definition above. Though its printed
representation will vary from implementation to implementation, aCommon Lisp

2.2 DEFINING FUNCTIONS 11

function is a first-class object, with all the same rights as more familiar objects
like numbers and strings. So we can pass this function as an argument, return it,
storeit in adata structure, and so on:

> (eq #’double (car (list #’double)))
T

We don’t even need defun to make functions. Like most Lisp objects, we
can refer to them literally. When we want to refer to an integer, we just use the
integer itself. To represent a string, we use a series of characters surrounded by
double-quotes. To represent afunction, weusewhat’scalled alambda-expression.
A lambda-expression is a list with three parts: the symbol 1ambda, a parameter
list, and a body of zero or more expressions. This lambda-expression refersto a
function equivalent to double:

(lambda (x) (* x 2))

It describes a function which takes one argument x, and returns 2x.

A lambda-expression can also be considered as the name of a function. If
double isaproper name, like “Michelangelo,” then (lambda (x) (x x 2))is
adefinitedescription, like* the man who painted the ceiling of the Sistine Chapel
By putting a sharp-quote before a lambda-expression, we get the corresponding
function:

> #’ (lambda (x) (*x x 2))
#<Interpreted-Function C674CE>

This function behaves exactly like double, but the two are distinct objects.
In a function call, the name of the function appears first, followed by the
arguments:

> (double 3)
6

Since lambda-expressions are also names of functions, they can also appear first
in function calls:

> ((lambda (x) (* x 2)) 3)
6

In Common Lisp, we can have afunction named double and avariable named
double at the sametime.

12 FUNCTIONS

> (setq double 2)
2
> (double double)
4

When aname occursfirst in afunction call, or is preceded by a sharp-quote, it is
taken to refer to afunction. Otherwiseit is treated as a variable name.

It is therefore said that Common Lisp has distinct name-spaces for variables
and functions. We can have a variable called foo and afunction called foo, and
they need not be identical. This situation can be confusing, and leads to a certain
amount of uglinessin code, but it is something that Common Lisp programmers
have to live with.

If necessary, Common Lisp providestwo functionswhich map symbolsto the
vaues, or functions, that they represent. The function symbol-value takes a
symbol and returns the value of the corresponding specia variable:

> (symbol-value ’double)
2

while symbol-function doesthe same for aglobally defined function:

> (symbol-function ’double)
#<Interpreted-Function C66ACE>

Note that, since functions are ordinary data objects, a variable could have a
function asits value:

> (setq x #’append)

#<Compiled-Function 46B4BE>

> (eq (symbol-value ’x) (symbol-function ’append))
T

Beneath the surface, defun is setting the symbol-function of itsfirst argu-
ment to a function constructed from the remaining arguments. The following two
expressions do approximately the same thing:

(defun double (x) (* x 2))

(setf (symbol-function ’double)
#’ (lambda (x) (x x 2)))

So defun has the same effect as procedure definition in other languages—to
associate a name with a piece of code. But the underlying mechanism is not the
same. We don’'t need defun to make functions, and functions don’t have to be

2.3 FUNCTIONAL ARGUMENTS 13

stored away as the value of some symbol. Underlying defun, which resembles
proceduredefinitionin any other language, isamore general mechanism: building
a function and associating it with a certain name are two separate operations.
When we don’t need the full generality of Lisp's notion of a function, defun
makes function definition as simple as in more restrictive languages.

2.3 Functional Arguments

Having functions as data objects means, among other things, that we can pass
them as argumentsto other functions. This possibility is partly responsiblefor the
importance of bottom-up programming in Lisp.

A language which allows functions as data objects must also provide some
way of calling them. In Lisp, thisfunction is apply. Generaly, we call apply
with two arguments: afunction, and alist of argumentsfor it. The following four
expressions all have the same effect:

+12)
(apply #°+ ’(1 2))
(apply (symbol-function ’+) (1 2))

(apply #’(lambda (x y) (+ x y)) *(1 2))

In Common Lisp, apply can take any number of arguments, and the function
given first will be applied to the list made by consing the rest of the arguments
onto the list given last. So the expression

(apply #°+ 1 ’(2))

is equivalent to the preceding four. If it isinconvenient to give the arguments as
alist, we can use funcall, which differs from apply only in this respect. This
expression

(funcall #°+ 1 2)

has the same effect as those above.

Many built-in Common Lisp functionstake functional arguments. Among the
most frequently used are the mapping functions. For example, mapcar takes two
or more arguments, a function and one or more lists (one for each parameter of
the function), and applies the function successively to elements of each list:

14 FUNCTIONS

> (mapcar #’(lambda (x) (+ x 10))

’(1 2 3))
(11 12 13)
> (mapcar #’+

’(1 2 3)

>(10 100 1000))
(11 102 1003)

Lisp programs freguently want to do something to each element of alist and get
back alist of results. The first example aboveillustrates the conventional way to
do this: make a function which does what you want done, and mapcar it over the
list.

Already we see how convenient it is to be able to treat functions as data. In
many languages, even if we could pass afunction as an argument to something like
mapcar, it would still haveto be afunction defined in some sourcefile beforehand.
If just one piece of code wanted to add 10 to each element of alist, we would have
to define a function, called plus_ten or some such, just for this one use. With
lambda-expressions, we can refer to functions directly.

One of the big differences between Common Lisp and the dialects which
preceded it are the large number of built-in functions that take functional argu-
ments. Two of the most commonly used, after the ubiquitous mapcar, are sort
and remove-if. Theformer is a general-purpose sorting function. It takes alist
and a predicate, and returns a list sorted by passing each pair of elements to the
predicate.

> (sort (1 42567 3) #'<)
(1234567)

To remember how sort works, it helpsto remember that if you sort alist with no
duplicates by <, and then apply < to theresulting list, it will return true.

If remove-if weren'tincluded in Common Lisp, it might be the first utility
you would write. It takes afunction and alist, and returns all the elements of the
list for which the function returns false.

> (remove-if #’evenp (1 2 3 45 6 7))
(1357

As an example of a function which takes functional arguments, here is a
definition of alimited version of remove-if:

2.4 FUNCTIONS AS PROPERTIES 15

(defun our-remove-if (fn 1st)
(if (null 1st)
nil
(if (funcall fn (car 1st))
(our-remove-if fn (cdr 1st))
(cons (car 1lst) (our-remove-if fn (cdr 1st))))))

Note that within this definition £n is not sharp-quoted. Since functions are data
objects, avariablecan haveafunction asitsregular value. That’swhat’shappening
here. Sharp-quoteisonly for referring to thefunction named by asymbol—usually
one globally defined as such with defun.

As Chapter 4 will show, writing new utilities which take functional arguments
is an important element of bottom-up programming. Common Lisp has so many
utilities built-in that the one you need may exist already. But whether you use
built-ins like sort, or write your own utilities, the principleis the same. Instead
of wiring in functionality, pass a functional argument.

2.4 FunctionsasProperties

Thefact that functionsare Lisp objectsalso allows usto write programswhich can
be extended to deal with new cases onthefly. Supposewewant towriteafunction
which takes a type of animal and behaves appropriately. In most languages, the
way to do thiswould bewith a case statement, and we can do it thisway in Lisp
aswell:

(defun behave (animal)
(case animal

(dog (wag-tail)
(bark))

(rat (scurry)
(squeak))

(cat (rub-legs)
(scratch-carpet))))

What if we want to add anew type of animal? If we were planning to add new
animals, it would have been better to define behave asfollows;

(defun behave (animal)
(funcall (get animal ’behavior)))

and to definethe behavior of anindividual animal asafunctionstored, for example,
on the property list of its name:

16 FUNCTIONS

(setf (get ’dog ’behavior)
#’ (lambda ()
(wag-tail)
(bark)))

Thisway, all we need do in order to add a new animal is define a new property.
No functions have to be rewritten.

The second approach, though more flexible, looks slower. It is. If speed were
critical, wewould use structuresinstead of property lists and, especially, compiled
instead of interpreted functions. (Section 2.9 explains how to make these.) With
structures and compiled functions, the more flexible type of code can approach or
exceed the speed of versions using case statements.

Thisuse of functionscorrespondsto the concept of amethod in object-oriented
programming. Generally speaking, a method is a function which is a property of
an object, and that's just what we have. If we add inheritance to this model, we'll
have all the elements of object-oriented programming. Chapter 25 will show that
this can be done with surprisingly little code.

One of the big selling points of object-oriented programming is that it makes
programs extensible. This prospect excites less wonder in the Lisp world, where
extensibility has always been taken for granted. If the kind of extensibility we
need does not depend too much on inheritance, then plain Lisp may already be
sufficient.

25 Scope

Common Lispisalexically scoped Lisp. Schemeisthe oldest dialect with lexical
scope; before Scheme, dynamic scope was considered one of the defining features
of Lisp.

The difference between lexical and dynamic scope comes down to how an
implementation deals with free variables. A symbol is bound in an expression
if it has been established as a variable, either by appearing as a parameter, or by
variable-binding operators like 1et and do. Symbols which are not bound are
said to be free. In this example, scope comesinto play:

(et ((y 7))
(defun scope-test (x)
(list x y)))

Withinthedefun expression,x ishound andy isfree. Freevariablesareinteresting
becauseit’s not obviouswhat their values should be. There'sno uncertainty about
the value of abound variable—when scope-test iscalled, the value of x should

2.6 CLOSURES 17

be whatever is passed as the argument. But what should be the value of y? This
is the question answered by the dialect’s scope rules.

In a dynamically scoped Lisp, to find the value of a free variable when exe-
cuting scope-test, we look back through the chain of functions that called it.
When we find an environment where y was bound, that binding of y will be the
oneused in scope-test. If wefind none, wetake the global value of y. Thus, in
adynamically scoped Lisp, y would havethevalueit had in the calling expression:

> (let ((y 5))
(scope-test 3))
(3 5)

With dynamic scope, it means nothing that y was bound to 7 when scope-test
was defined. All that mattersis that y had a value of 5 when scope-test was
called.

Inalexically scoped Lisp, instead of looking back through the chain of calling
functions, we look back through the containing environments at the time the
function was defined. In alexically scoped Lisp, our example would catch the
binding of y where scope-test was defined. So thisis what would happen in
Common Lisp:

> (let ((y 5))
(scope-test 3))
37

Here the binding of y to 5 at the time of the call has no effect on the returned
value.

Thoughyou can still get dynamic scopeby declaring avariableto bespecial,
lexical scopeisthe default in Common Lisp. On the whole, the Lisp community
seems to view the passing of dynamic scope with little regret. For one thing, it
used to lead to horribly elusive bugs. But lexical scope is more than a way of
avoiding bugs. As the next section will show, it also makes possible some new
programming techniques.

2.6 Closures

Because Common Lisp islexically scoped, when we define afunction containing
free variables, the system must save copies of the bindings of those variables at
the time the function was defined. Such a combination of a function and a set
of variable bindingsis called a closure. Closures turn out to be useful in awide
variety of applications.

18 FUNCTIONS

Closures are so pervasive in Common Lisp programs that it's possible to use
them without even knowing it. Every time you give mapcar a sharp-quoted
lambda-expression containing free variables, you're using closures. For example,
suppose we want to write a function which takes a list of numbers and adds a
certain amount to each one. Thefunction List+

(defun list+ (1st n)
(mapcar #’(lambda (x) (+ x n))
1st))

will do what we want:

> (list+ (1 2 3) 10)
(11 12 13)

If we look closely at the function which is passed to mapcar within 1ist+, it's
actually a closure. The instance of n is free, and its binding comes from the
surrounding environment. Under lexical scope, every such use of a mapping
function causes the creation of aclosure.*

Closures play a more conspicuous role in a style of programming promoted
by Abelson and Sussman'’s classic Sructure and Interpretation of Computer Pro-
grams. Closures are functionswith local state. The simplest way to use this state
isinasituation like the following:

(let ((counter 0))
(defun new-id () (incf counter))
(defun reset-id () (setq counter 0)))

These two functions share a variable which serves as a counter. The first one
returns successive values of the counter, and the second resets the counter to 0.
The same thing could be done by making the counter a global variable, but this
way it is protected from unintended references.

It's also useful to be ableto return functionswith local state. For example, the
functionmake-adder

(defun make-adder (n)
#’ (lambda (x) (+ x n)))

takes a number, and returns a closure which, when called, adds that number to its
argument. We can make as many instances of adders as we want:

1Under dynamic scope the same idiom will work for a different reason—so long as neither of
mapcar’s parameter is called x.

2.6 CLOSURES 19

> (setq add2 (make-adder 2)
add10 (make-adder 10))

#<Interpreted-Function BF162E>

> (funcall add2 5)

7

> (funcall add10 3)

13

In the closures returned by make-adder, the internal state is fixed, but it's also
possible to make closures which can be asked to change their state.

(defun make-adderb (n)
#’ (lambda (x &optional change)
(if change
(setq n x)
(+ x n))))

This new version of make-adder returns closures which, when called with one
argument, behave just like the old ones.

> (setq addx (make-adderb 1))
#<Interpreted-Function BF1C66>
> (funcall addx 3)

4

However, when the new type of adder is called with a non-nil second argument,
itsinternal copy of n will be reset to the value passed as the first argument:

> (funcall addx 100 t)
100

> (funcall addx 3)

103

It's even possible to return a group of closures which share the same data
objects. Figure 2.1 contains afunction which creates primitive databases. It takes
an assoc-list (db), and returnsalist of three closures which query, add, and delete
entries, respectively.

Each call to make-dbms makes anew database—anew set of functions closed
over their own shared copy of an assoc-list.

> (setq cities (make-dbms ’((boston . us) (paris . france))))
(#<Interpreted-Function 8022E7>
#<Interpreted-Function 802317>
#<Interpreted-Function 802347>)

20 FUNCTIONS

(defun make-dbms (db)
(list

#’ (lambda (key)
(cdr (assoc key db)))

#’ (lambda (key val)
(push (cons key val) db)
key)

#’ (lambda (key)
(setf db (delete key db :key #’car))
key)))

Figure 2.1: Three closuresshare alist.

The actual assoc-list within the database is invisible from the outside world—we
can't even tell that it's an assoc-list—nbut it can be reached through the functions
which are componentsof cities:

> (funcall (car cities) ’boston)

Us

> (funcall (second cities) ’london ’england)
LONDON

> (funcall (car cities) ’london)

ENGLAND

Calingthe car of alistisabit ugly. Inrea programs, the access functions might
instead be entries in a structure. Using them could also be cleaner—databases
could be reached indirectly viafunctionslike:

(defun lookup (key db)
(funcall (car db) key))

However, the basic behavior of closuresisindependent of such refinements.

Inreal programs, the closuresand datastructureswoul d a so be more elaborate
thanthosewe seeinmake-adder or make-dbms. Thesinglesharedvariablecould
be any number of variables, each bound to any sort of data structure.

Closuresare one of the distinct, tangible benefitsof Lisp. SomeLisp programs
could, with effort, be trandated into less powerful languages. But just try to
translate a program which uses closures as above, and it will become evident how
much work this abstraction is saving us. Later chapterswill deal with closuresin
more detail. Chapter 5 shows how to use them to build compound functions, and
Chapter 6 looks at their use as a substitute for traditional data structures.

2.7 LOCAL FUNCTIONS 21

2.7 Local Functions

When we define functions with lambda-expressions, we face a restriction which
doesn’t arisewith defun: afunction defined in alambda-expression doesn’t have
anameand thereforehas noway of referringtoitself. Thismeansthat in Common
Lisp we can't use 1ambda to define arecursive function.

If wewant to apply some functionto all the elements of alist, we use the most
familiar of Lisp idioms:

> (mapcar #’(lambda (x) (+ 2 x))
(257 3))
(4795)

What about cases where we want to give arecursive function as the first argument
tomapcar? If the function has been defined with defun, we can simply refer to
it by name:

> (mapcar #’copy-tree ’((a b) (c d e)))
((AB) (CDE))

But now suppose that the function has to be a closure, taking some bindings from
the environment in which the mapcar occurs. In our examplelist+,

(defun list+ (1st n)
(mapcar #’(lambda (x) (+ x n))
1st))

thefirstargumenttomapcar,#’ (lambda (x) (+ x n)),mustbedefinedwithin
list+ because it needs to catch the binding of n. So far so good, but what if we
want to givemapcar afunction which both needslocal bindingsand is recursive?
We can’t use afunction defined el sewhere with defun, because we need bindings
from the local environment. And we can’t use lambda to define a recursive
function, because the function will have no way of referring to itself.

Common Lisp gives us labels as a way out of this dilemma. With one
important reservation, 1abels could be described as a sort of 1et for functions.
Each of the binding specificationsin a labels expression should have the form

({name) (parameters) . (body))
Within the 1abels expression, (name) will refer to afunction equivalent to:
#’ (lambda (parameters) . (body))

So for example:

22 FUNCTIONS

> (labels ((inc (x) (1+ x)))
(inc 3))
4

However, there is an important difference between let and labels. Inalet
expression, the value of one variable can’t depend on another variable made by
the same 1let—that is, you can’t say

(let ((x 10) (y x))
y)

and expect thevalue of the new y toreflect that of thenew x. In contrast, the body of
afunction f definedinalabels expression may refer to any other function defined
there, including f itself, which makes recursive function definitions possible.

Using 1abels we can write afunction analogous to 1ist+, but in which the
first argument to mapcar is arecursive function:

(defun count-instances (obj lsts)
(labels ((instances-in (1st)
(if (comsp 1lst)
(+ (if (eq (car 1st) obj) 1 0)
(instances-in (cdr 1st)))
0)))

(mapcar #’instances-in 1lsts)))

This function takes an object and a list, and returns a list of the number of
occurrences of the object in each element:

> (count-instances ’a ((abc) (darpa) (dar) (aa)))
1212

2.8 Tail-Recursion

A recursive function is one that calls itself. Such a call is tail-recursive if no
work remains to be done in the calling function afterwards. This function is not
tail-recursive

(defun our-length (1lst)
(if (null 1st)
0
(1+ (our-length (cdr 1lst)))))

because on returning from the recursive call we have to passtheresult to 1+. The
following function is tail-recursive, though

2.8 TAIL-RECURSION 23

(defun our-find-if (fn 1st)
(if (funcall fn (car 1lst))
(car 1st)
(our-find-if fn (cdr 1st))))

because the value of the recursive call isimmediately returned.

Tail-recursion is desirable because many Common Lisp compilers can trans-
form tail-recursive functions into loops. With such a compiler, you can have the
elegance of recursion in your source code without the overhead of function calls
at runtime. Thegainin speed is usually great enough that programmers go out of
their way to make functions tail-recursive.

A function which isn’t tail-recursive can often be transformed into one that is
by embeddinginit alocal functionwhich usesan accumulator. In thiscontext, an
accumulator is a parameter representing the value computed so far. For example,
our-length could be transformed into

(defun our-length (1lst)
(labels ((rec (1st acc)
(if (null 1st)
acc
(rec (cdr 1st) (1+ acc)))))
(rec 1st 0)))

where the number of list elements seen so far is contained in a second parameter,
acc. When the recursion reaches the end of the list, the value of acc will be
the total length, which can just be returned. By accumulating the value as we go
down the calling tree instead of constructing it on the way back up, we can make
rec tail-recursive.

Many Common Lisp compilers can do tail-recursion optimization, but not all
of them do it by default. So after writing your functionsto be tail-recursive, you
may also want to put

(proclaim ’ (optimize speed))

at thetop of thefile, to ensurethat the compiler can take advantage of your efforts. 2

Given tail-recursion and type declarations, existing Common Lisp compilers
can generate code that runs as fast as, or faster than, C. Richard Gabriel givesas o
an example the following function, which returns the sum of the integers from 1
ton:

2The declaration (optimize speed) ought to be an abbreviation for (optimize (speed 3)).
However, one Common Lisp implementation does tail-recursion optimization with the former, but not
the latter.

24 FUNCTIONS

(defun triangle (n)
(labels ((tri (c n)

(declare (type fixnum n c))

(if (zerop n)
c
(tri (the fixnum (+ n c))

(the fixnum (- n 1))))))
(tri 0 n)))

Thisis what fast Common Lisp code looks like. At first it may not seem natural
to write functions this way. It's often a good idea to begin by writing a function
in whatever way seems most natural, and then, if necessary, transformingitinto a
tail-recursive equivalent.

2.9 Compilation

Lisp functions can be compiled either individually or by thefile. If you just type
adefun expression into the toplevel,

> (defun foo (x) (1+ x))
FOO

many implementationswill create aninterpreted function. You can check whether
agiven function is compiled by feeding it to compiled-function-p:

> (compiled-function-p #’foo)
NIL

We can have foo compiled by giving its name to compile

> (compile ’foo)
FOO

which will compile the definition of foo and replace the interpreted version with
acompiled one.

> (compiled-function-p #’foo)
T

Compiled and interpreted functions are both Lisp objects, and behave the same,
except with respect to compiled-function-p. Literal functions can aso be
compiled: compile expectsits first argument to be a name, but if you givenil
as the first argument, it will compile the lambda-expression given as the second
argument.

29 COMPILATION 25

> (compile nil ’(lambda (x) (+ x 2)))
#<Compiled-Function BF55BE>

If you give both the name and function arguments, compile becomes a sort of
compiling defun:

> (progn (compile ’bar ’(lambda (x) (* x 3)))
(compiled-function-p #’bar))
T

Having compile inthelanguage meansthat aprogram could build and compile
new functionsonthefly. However, calling compile explicitly isadrastic measure,
comparable to calling eval, and should be viewed with the same suspicion. 3
When Section 2.1 said that creating new functions at runtime was a routinely
used programming technique, it referred to new closures like those made by
make-adder, not functions made by caling compile on raw lists. Calling
compile is not aroutinely used programming technique—it's an extremely rare
one. So beware of doing it unnecessarily. Unless you're implementing another
language on top of Lisp (and much of the time, even then), what you need to do
may be possible with macros.

There are two sorts of functions which you can’t give as an argument to
compile. According to cLTL2 (p. 677), you can’t compile a function “defined
interpretively in a non-null lexical environment.” That is, if at the toplevel you
define foo withinalet

> (let ((y 2))
(defun foo (x) (+ x y)))

then (compile ’foo) will not necessarily work.* You also can't call compile
on afunction which isalready compiled. In this situation, CLTL2 hints darkly that
“the consequences. . .are unspecified.”

The usua way to compile Lisp code is not to compile functions individually
with compile, but to compile whole files with compile-file. This function
takes afilename and creates a compiled version of the source file—typically with
the same base name but a different extension. When the compiled file is |oaded,
compiled-function-p shouldreturntruefor al the functionsdefinedin thefile.

Later chapterswill depend on another effect of compilation: when onefunction
occurswithin another function, and the containing function is compiled, the inner

3An explanation of why it is bad to call eval explicitly appears on page 278.

41t'sok to have this codein afile and then compile thefile. Therestriction isimposed oninterpreted
code for implementation reasons, not because there's anything wrong with defining functionsin distinct
lexical environments.

26 FUNCTIONS

function will also get compiled. CLTL2 does not seem to say explicitly that this
will happen, but in a decent implementation you can count on it.

The compiling of inner functions becomes evident in functions which return
functions. When make-adder (page 18) is compiled, it will return compiled
functions:

> (compile ’make-adder)

MAKE-ADDER

> (compiled-function-p (make-adder 2))
T

Aslater chapterswill show, thisfact is of great importancein the implementation
of embedded languages. If a new language is implemented by transformation,
and the transformation code is compiled, then it yields compiled output—and
so becomes in effect a compiler for the new language. (A simple example is
described on page 81.)

If we have a particularly small function, we may want to request that it be
compiled inline. Otherwise, the machinery of calling it could entail more effort
than the function itself. If we define a function:

(defun 50th (1st) (nth 49 1st))
and make the declaration;
(proclaim ’(inline 50th))

then areference to 50th within a compiled function should no longer require a
real function call. If we define and compile a function which calls 50th,

(defun foo (1st)
(+ (50th 1st) 1))

then when foo is compiled, the code for 50th should be compiled right into it,
just asif we had written

(defun foo (1st)
(+ (nth 49 1st) 1))

in the first place. The drawback is that if we redefine 50th, we aso have to
recompile foo, or it will still reflect the old definition. The restrictions on inline
o functions are basically the same as those on macros (see Section 7.9).

2.10 FUNCTIONS FROM LISTS 27

2.10 Functionsfrom Lists

Insomeearlier diaectsof Lisp, functionswererepresented aslists. ThisgaveLisp
programs the remarkable ability to write and execute their own Lisp programs.
In Common Lisp, functions are no longer made of lists—good implementations
compile them into native machine code. But you can still write programs that
write programs, because lists are the input to the compiler.

It cannot be overemphasized how important it is that Lisp programs can
write Lisp programs, especialy since this fact is so often overlooked. Even
experienced Lisp usersrarely realize the advantages they derive from this feature
of the language. This is why Lisp macros are so powerful, for example. Most
of the techniques described in this book depend on the ability to write programs
which manipulate Lisp expressions.

Functional Programming

The previous chapter explained how Lisp and Lisp programs are both built out
of asingle raw material: the function. Like any building material, its qualities
influence both the kinds of things we build, and the way we build them.

This chapter describes the kind of construction methods which prevail in
the Lisp world. The sophistication of these methods allows us to attempt more
ambitious kinds of programs. The next chapter will describe one particularly
important class of programs which become possible in Lisp: programs which
evolveinstead of being developed by the old plan-and-implement method.

3.1 Functional Design

The character of an object isinfluenced by the elementsfrom which it ismade. A
wooden building looks different from a stone one, for example. Even when you
are too far away to see wood or stone, you can tell from the overall shape of the
building what it's made of. The character of Lisp functionshasasimilar influence
on the structure of Lisp programs.

Functional programming means writing programs which work by returning
values instead of by performing side-effects. Side-effects include destructive
changesto objects (e.g. by rplaca) and assignmentsto variables (e.g. by setq).
If side-effects are few and localized, programs become easier to read, test, and
debug. Lisp programs have not always been written in this style, but over time
Lisp and functional programming have gradually become inseparable.

An example will show how functional programming differs from what you
might do in another language. Suppose for some reason we want the elements of

28

31 FUNCTIONAL DESIGN 29

(defun bad-reverse (1lst)
(let* ((len (length 1lst))
(ilimit (truncate (/ len 2))))
(do ((1 0 (1+ 1))
(j (1- len) (1- j)))
((>= 1 ilimit))
(rotatef (nth i 1st) (nth j 1st)))))

Figure 3.1: A function to reverselists.

alist inthereverse order. Instead of writing afunction to reverselists, we write a
function which takesalist, and returnsalist with the same elementsin the reverse
order.

Figure 3.1 contains a function to reverse lists. It treats the list as an array,
reversing it in place; itsreturn valueis irrelevant:

> (setq 1lst ’(a b ¢))
(ABOC

> (bad-reverse 1st)
NIL

> 1st

(C B A)

As its name suggests, bad-reverse is far from good Lisp style. Moreover, its
uglinessiscontagious. becauseit worksby side-effects, it will alsodraw itscallers
away from the functional ideal.

Though cast in the role of the villain, bad-reverse does have one merit: it
shows the Common Lisp idiom for swapping two values. The rotatef macro
rotates the values of any number of generalized variables—that is, expressions
you could give asthefirst argument to set£. When applied to just two arguments,
the effect is to swap them.

In contrast, Figure 3.2 shows a function which returns reversed lists. With
good-reverse, we get the reversed list as the return value; the original list is not
touched.

> (setq 1lst ’(a b ¢))
(AB O

> (good-reverse lst)
(C B A

> 1lst

(ABO

30 FUNCTIONAL PROGRAMMING

(defun good-reverse (1lst)
(labels ((rev (1st acc)
(if (null 1st)
acc
(rev (cdr 1st) (comns (car 1st) acc)))))
(rev 1st nil)))

Figure 3.2: A function to return reversed lists.

It used to be thought that you could judge someone's character by looking at
the shape of his head. Whether or not this is true of people, it is generaly true
of Lisp programs. Functiona programs have a different shape from imperative
ones. The structurein afunctional program comes entirely from the composition
of arguments within expressions, and since arguments are indented, functional
code will show more variation in indentation. Functional code looks fluid* on the
page; imperative code looks solid and blockish, like Basic.

Even from a distance, the shapes of bad- and good-reverse suggest which
is the better program. And despite being shorter, good-reverse is aso more
efficient: O(n) instead of O(n?).

We are spared the trouble of writing reverse because Common Lisp has
it built-in. 1t is worth looking briefly at this function, because it is one that
often brings to the surface misconceptions about functional programming. Like
good-reverse,thebuilt-inreverse worksby returning avalue—it doesn’t touch
its arguments. But people learning Lisp may assume that, like bad-reverse, it
works by side-effects. If in some part of a program they want a list 1st to be
reversed, they may write

(reverse 1st)

and wonder why the call seems to have no effect. In fact, if we want effects from
such a function, we have to see to it ourselves in the calling code. That is, we
need to write

(setq 1lst (reverse 1lst))

instead. Operators like reverse are intended to be called for return values, not
side-effects. It isworth writing your own programsin this style too—not only for
its inherent benefits, but because, if you don’t, you will be working against the
language.

LFor a characteristic example, see page 242.

31 FUNCTIONAL DESIGN 31

Oneof the pointsweignored in the comparison of bad- and good-reverseis
that bad-reverse doesn’t cons. Instead of building new list structure, it operates
on the original list. This can be dangerous—the list could be needed elsewhere
in the program—but for efficiency it is sometimes necessary. For such cases,
Common Lisp provides an O(n) destructive reversing function called nreverse.

A destructivefunctionisonethat can alter theargumentspassed toit. However,
even destructive functions usually work by returning values: you have to assume
that nreverse will recycle lists you give to it as arguments, but you still can't
assume that it will reverse them. As before, the reversed list has to be found in
thereturn value. You till can’t write

(nreverse 1lst)

in the middle of afunction and assume that afterwards 1st will bereversed. This
iswhat happensin most implementations:

> (setq 1lst ’(a b ¢))
(A B C)

> (nreverse 1lst)

(C B A)

> 1st

A

Toreverse 1st, you have would have to set 1st to the return value, as with plain
reverse.

If a function is advertised as destructive, that doesn’t mean that it's meant
to be called for side-effects. The danger is, some destructive functions give the
impression that they are. For example,

(nconc x y)
almost always has the same effect as
(setq x (nconc x y))

If you wrote code which relied on the former idiom, it might seem to work for
sometime. However, it wouldn’t do what you expected when x wasnil.

Only afew Lisp operatorsareintended to be called for side-effects. Ingeneral,
thebuilt-in operatorsare meant to becalled for their returnvalues. Don’'tbemisled
by nameslike sort, remove, Or substitute. If you want side-effects, use setq
on the return value.

Thisvery rule suggeststhat someside-effectsareinevitable. Having functional
programming as an ideal doesn’t imply that programs should never have side-
effects. It just means that they should have no more than necessary.

32 FUNCTIONAL PROGRAMMING

It may take timeto develop thishabit. Oneway to start isto treat thefollowing
operators asif there were atax on their use:

set setq setf psetf psetq incf decf push pop pushnew
rplaca rplacd rotatef shiftf remf remprop remhash

and also let*, in which imperative programs often lie concealed. Treating
these operators as taxable is only proposed as a help toward, not a criterion for,
good Lisp style. However, this alone can get you surprisingly far.

In other languages, one of the most common causes of side-effectsisthe need
for a function to return multiple values. If functions can only return one value,
they haveto “return” the rest by altering their parameters. Fortunately, thisisn't
necessary in Common Lisp, because any function can return multiple values.

The built-in function truncate returns two values, for example—the trun-
cated integer, and what was cut off in order to createit. A typical implementation
will print both when truncate iscalled at the toplevel:

> (truncate 26.21875)
26
0.21875

When the calling code only wants one value, the first oneis used:

> (= (truncate 26.21875) 26)
T

The calling code can catch both return valuesby using amultiple-value-bind.
This operator takes a list of variables, a call, and a body of code. The body is
evaluated with the variables bound to the respective return values from the call:

> (multiple-value-bind (int frac) (truncate 26.21875)
(list int frac))
(26 0.21875)

Finally, to return multiple values, we use the values operator:

> (defun powers (x)
(values x (sqrt x) (expt x 2)))

POWERS

> (multiple-value-bind (base root square) (powers 4)
(1list base root square))

(4 2.0 16)

3.2 IMPERATIVE OUTSIDE-IN 33

Functional programmingisagoodideaingeneral. Itisaparticularly goodidea
in Lisp, because Lisp has evolved to support it. Built-in operators like reverse
and nreverse are meant to be used in this way. Other operators, like values
andmultiple-value-bind, have been provided specifically to make functional
programming easier.

3.2 Imperative Outside-In

The aims of functional programming may show more clearly when contrasted
with those of the more common approach, imperative programming. A functional
program tells you what it wants; an imperative program tells you what to do. A
functional program says “Return alist of a and the square of the first element of
x:”
(defun fun (x)

(list ’a (expt (car x) 2)))

Animperative programssays“ Get thefirst element of x, then squareit, thenreturn
alist of a and the square:”

(defun imp (x)
(let (y sqr)
(setq y (car x))
(setq sqr (expt y 2))
(list ’a sqr)))

Lisp users are fortunate in being able to write this program both ways. Some
languages are only suited to imperative programming—notably Basic, along with
most machine languages. In fact, the definition of imp is similar in form to the
machine language code that most Lisp compilers would generate for fun.

Why write such code when the compiler could do it for you? For many
programmers, this question does not even arise. A language stampsits pattern on
our thoughts: someone used to programming in an imperative language may have
begun to conceive of programsin imperative terms, and may actualy find it easier
to write imperative programs than functional ones. This habit of mind is worth
overcoming if you have alanguage that will et you.

For alumni of other languages, beginning to use Lisp may be like stepping
onto a skating rink for the first time. It's actually much easier to get around on
icethan it ison dry land—if you use skates. Till then you will be left wondering
what people see in this sport.

What skates are to ice, functional programmingisto Lisp. Together the two
alow you to travel more gracefully, with less effort. But if you are accustomed

34 FUNCTIONAL PROGRAMMING

to another mode of travel, this may not be your experience at first. One of
the obstacles to learning Lisp as a second language is learning to program in a
functional style.

Fortunately there is a trick for transforming imperative programs into func-
tional ones. You can begin by applying this trick to finished code. Soon you will
begin to anticipate yourself, and transform your code as you write it. Soon after
that, you will begin to conceive of programsin functional terms from the start.

The trick is to realize that an imperative program is a functional program
turned inside-out. To find the functional program implicit in our imperative one,
we just turn it outside-in. Let’stry thistechnique on imp.

Thefirst thing we noticeisthe creation of y and sqr intheinitial Let. Thisis
asign that bad things areto follow. Like eval at runtime, uninitialized variables
are so rarely needed that they should generally be treated as a symptom of some
illness in the program. Such variables are often used like pins which hold the
program down and keep it from coiling into its natural shape.

However, we ignore them for the time being, and go straight to the end of
the function. What occurs last in an imperative program occurs outermost in a
functional one. So our first step isto grab thefinal call to 1ist and begin stuffing
therest of the program inside it—just like turning a shirt inside-out. We continue
by applying the same transformation repeatedly, just as we would with the sleeves
of the shirt, and in turn with their cuffs.

Starting at the end, we replace sqr with (expt y 2), yielding:

(list ’a (expt y 2)))
Thenwereplacey by (car x):
(1ist ’a (expt (car x) 2))

Now we can throw away the rest of the code, having stuffed it all into the last
expression. In the process we removed the need for the variables y and sqr, so
we can discard the let aswell.

Thefinal result is shorter than what we began with, and easier to understand.
In the original code, we're faced with the final expression (1ist ’a sqr), and
it's not immediately clear where the value of sqr comes from. Now the source of
thereturn valueislaid out for uslike aroad map.

The example in this section was a short one, but the technique scales up.
Indeed, it becomes more valuable as it is applied to larger functions. Even
functions which perform side-effects can be cleaned up in the portions which
don't.

3.3 FUNCTIONAL INTERFACES 35

3.3 Functional Interfaces

Some side-effects are worse than others. For example, though this function calls
nconc

(defun qualify (expr)
(nconc (copy-list expr) (list ’maybe)))

it preserves referential transparency.? If you call it with a given argument, it will
always return the same (equal) value. From the caller’s point of view, qualify
might aswell be purely functional code. We can’t say the samefor bad-reverse
(page 29), which actually modifiesits argument.

Instead of treating all side-effectsas equally bad, it would be helpful if we had
some way of distinguishing between such cases. Informally, we could say that it's
harmless for afunction to modify something that no one else owns. For example,
thenconc in qualify is harmless because the list given as the first argument is
freshly consed. No one else could owniit.

In the general case, we have to talk about ownership not by functions, but by
invocations of functions. Though no one else owns the variable x here,

(let ((x 0))
(defun total (y)
(incf x y)))

the effects of one call will be visiblein succeeding ones. So therule should be: a
given invocation can safely modify what it uniquely owns.

Who owns arguments and return values? The convention in Lisp seemsto be
that an invocation owns objectsit receives as return values, but not objects passed
toit asarguments. Functionsthat modify their arguments are distinguished by the
label “destructive,” but thereis no special name for functions that modify objects
returned to them.

This function adheres to the convention, for example:

(defun ok (x)
(nconc (list ’a x) (1list ’c)))

It callsnconc, which doesn’t, but since the list spliced by nconc will aways be
freshly made rather than, say, alist passed to ok as an argument, ok itself is ok.
If it were written dightly differently, however,

(defun not-ok (x)
(nconc (list ’a) x (list ’c)))

2A definition of referential transparency appears on page 198.

36 FUNCTIONAL PROGRAMMING

then the call to nconc would be modifying an argument passed to not-ok.

Many Lisp programs violate this convention, at least locally. However, aswe
saw with ok, local violations need not disqualify the calling function. And func-
tions which do meet the preceding conditionswill retain many of the advantages
of purely functional code.

To write programs that are really indistinguishable from functional code, we
have to add one more condition. Functions can’t share objects with other code
that doesn't follow the rules. For example, though this function doesn’t have
Side-effects,

(defun anything (x)
(+ x *anythingx))

its return value depends on the global variable *anything*. So if any other
function can alter the value of this variable, anything could return anything.

Code written so that each invocation only modifieswhat it ownsis amost as
good as purely functional code. A functionthat meetsall the preceding conditions
at least presents a functional interface to the world: if you call it twice with the
same arguments, you should get the same results. And this, as the next section
will show, isacrucial ingredient in bottom-up programming.

One problem with destructive operationsisthat, like global variables, they can
destroy the locality of a program. When you're writing functional code, you can
narrow your focus: you only need consider the functions that call, or are called
by, the one you're writing. This benefit disappears when you want to modify
something destructively. It could be used anywhere.

The conditions above do not guarantee the perfect locality you get with purely
functional code, though they do improvethings somewhat. For example, suppose
that £ calls g as below:

(defun £ (x)
(let ((val (g x)))
; safe to modify val here?

))

Isit safe for £ to nconc something onto val? Not if g is identity: then we
would be modifying something originally passed as an argument to £ itself.

So even in programs which do follow the convention, we may have to look
beyond £ if we want to modify something there. However, we don’'t have to
look as far: instead of worrying about the whole program, we now only have to
consider the subtree beginning with £.

A corollary of the convention aboveisthat functionsshouldn’t return anything
that isn't safe to modify. Thus one should avoid writing functions whose return

34 INTERACTIVE PROGRAMMING 37

values incorporate quoted objects. If we define exclaim so that its return value
incorporates a quoted list,

(defun exclaim (expression)
(append expression ’(oh my)))

Then any later destructive modification of the return value

> (exclaim ’(lions and tigers and bears))
(LIONS AND TIGERS AND BEARS OH MY)

> (nconc * ’(goodness))

(LIONS AND TIGERS AND BEARS OH MY GOODNESS)

could alter the list within the function:

> (exclaim ’(fixnums and bignums and floats))
(FIXNUMS AND BIGNUMS AND FLOATS OH MY GOODNESS)

To make exclaim proof against such problems, it should be written:

(defun exclaim (expression)
(append expression (list ’oh ’my)))

Thereis one major exception to the rule that functions shouldn’t return quoted
lists: the functions which generate macro expansions. Macro expanders can
safely incorporate quoted lists in the expansions they generate, if the expansions
are going straight to the compiler.

Otherwise, one might as well be a suspicious of quoted lists generally. Many
other uses of them arelikely to be something which ought to be donewith amacro
like in (page 152).

3.4 Interactive Programming

The previous sections presented the functional style as a good way of organizing
programs. But it ismorethan this. Lisp programmersdid not adopt the functional
style purely for aesthetic reasons. They use it because it makes their work easier.
In Lisp’s dynamic environment, functional programs can be written with unusual
speed, and at the same time, can be unusually reliable.

In Lisp it is comparatively easy to debug programs. A lot of information is
available at runtime, which helps in tracing the causes of errors. But even more
important isthe ease with which you cantest programs. You don't haveto compile
a program and test the whole thing at once. You can test functions individually
by calling them from the toplevel loop.

38 FUNCTIONAL PROGRAMMING

Incremental testing is so valuablethat Lisp style has evolved to take advantage
of it. Programswritten in the functional style can be understood one function at a
time, and from the point of view of the reader thisisits main advantage. However,
the functiona style is also perfectly adapted to incremental testing: programs
written in this style can also be tested one function at atime. When a function
neither examinesnor altersexternal state, any bugswill appear immediately. Such
afunction can affect the outside world only through its return values. Insofar as
these are what you expected, you can trust the code which produced them.

Experienced Lisp programmers actually design their programs to be easy to
test:

1. They try to segregate side-effects in a few functions, allowing the greater
part of the program to be written in a purely functional style.

2. If afunction must perform side-effects, they try at |east to giveit afunctional
interface.

3. They give each function a single, well-defined purpose.

When afunction is written, they can test it on a selection of representative cases,
then move onto the next one. If each brick doeswhat it's supposed to do, the wall
will stand.

In Lisp, the wall can be better-designed as well. Imagine the kind of conver-
sation you would have with someone so far away that there was a transmission
delay of one minute. Now imagine speaking to someone in the next room. You
wouldn't just have the same conversation faster, you would have a different kind
of conversation. In Lisp, developing software is like speaking face-to-face. You
can test code as you're writing it. And instant turnaround has just as dramatic an
effect on development as it does on conversation. You don’t just write the same
program faster; you write a different kind of program.

How so? When testing is quicker you can do it more often. In Lisp, asin any
language, development is a cycle of writing and testing. But in Lisp the cycleis
very short: singlefunctions, or even partsof functions. Andif you test everything
as you write it, you will know where to look when errors occur: in what you
wrote last. Simple as it sounds, this principle is to a large extent what makes
bottom-up programming feasible. It brings an extra degree of confidence which
enables Lisp programmers to break free, at least part of the time, from the old
plan-and-implement style of software devel opment.

Section 1.1 stressed that bottom-up design is an evolutionary process. You
build up a language as you write a program in it. This approach can work only
if you trust the lower levels of code. If you really want to use this layer as a
language, you have to be able to assume, as you would with any language, that
any bugsyou encounter are bugsin your application and not in the languageitself.

34 INTERACTIVE PROGRAMMING 39

So your new abstractions are supposed to bear this heavy burden of responsi-
bility, and yet you're supposed to just spin them off as the need arises? Just so; in
Lisp you can have both. When you write programsin a functiona style and test
them incrementally, you can have the flexibility of doing things on the spur of the
moment, plus the kind of reliability one usually associates with careful planning.

A4

Utility Functions

Common Lisp operators come in three types: functions and macros, which you
can write yourself, and special forms, which you can't. This chapter describes
techniques for extending Lisp with new functions. But “techniques’ here means
something different fromwhat it usually does. Theimportant thing to know about
such functionsisnot how they’rewritten, but wherethey comefrom. Anextension
to Lisp will be written using mostly the same techniques you would use to write
any other Lisp function. The hard part of writing these extensionsis not deciding
how to write them, but deciding which ones to write.

4.1 Birth of a Utility

In its simplest form, bottom-up programming means second-guessing whoever
designed your Lisp. At the same time as you write your program, you also add to
Lisp new operators which make your program easy to write. These new operators
are called utilities.

The term “utility” has no precise definition. A piece of code can be called
autility if it seemstoo small to be considered as a separate application, and too
general-purpose to be considered as part of a particular program. A database
program would not be a utility, for example, but a function which performed a
singleoperation onalist couldbe. Most utilitiesresemblethefunctionsand macros
that Lisp has aready. In fact, many of Common Lisp’s built-in operators began
life as utilities. The function remove-if-not, which collects al the elements of
alist satisfying some predicate, was defined by individual programmersfor years
beforeit became a part of Common Lisp.

40

4.1 BIRTH OF A UTILITY 41

Learning to write utilities would be better described as learning the habit of
writing them, rather than the technique of writing them. Bottom-up programming
means simultaneously writing a program and a programming language. To do this
well, you have to develop a fine sense of which operators a program is lacking.
You have to be able to look at a program and say, “Ah, what you really mean to
say isthis”

For example, suppose that nicknames is a function which takes a name
and builds a list of al the nicknames which could be derived from it. Given
this function, how do we collect al the nicknames yielded by a list of names?
Someone learning Lisp might write afunction like:

(defun all-nicknames (names)
(if (null names)
nil
(nconc (nicknames (car names))
(all-nicknames (cdr names)))))

A more experienced Lisp programmer can look at such a function and say “Ah,
what you really want is mapcan.” Then instead of having to define and call a
new function to find all the nicknames of a group of people, you can use asingle
expression:

(mapcan #’nicknames people)

The definition of al1-nicknames is reinventing the wheel. However, that's not
all that’s wrong with it: it is also burying in a specific function something that
could be done by a general-purpose operator.

In this case the operator, mapcan, aready exists. Anyone who knew about
mapcan would feel alittle uncomfortablelookingat al1-nicknames. To begood
at bottom-up programming is to feel equally uncomfortable when the missing
operator is one which hasn’t been written yet. You must be able to say “what you
really want is x,” and at the same time, to know what x should be.

Lisp programming entails, among other things, spinning off new utilities as
you need them. The aim of this section is to show how such utilities are born.
Suppose that towns isalist of nearby towns, sorted from nearest to farthest, and
that bookshops isafunction which returnsalist of al the bookshopsin acity. If
we want to find the nearest town which has any bookshops, and the bookshopsin
it, we could begin with:;

(let ((town (find-if #’bookshops towns)))
(values town (bookshops town)))

42 UTILITY FUNCTIONS

But thisisabit inelegant: when £ind-if findsan element for which bookshops
returns a non-nil value, the value is thrown away, only to be recomputed as soon
as find-if returns. If bookshops were an expensive call, this idiom would be
inefficient aswell asugly. To avoid unnecessary work, we could use thefollowing
function instead:

(defun find-books (towns)
(if (null towns)

nil
(let ((shops (bookshops (car towns))))
(if shops

(values (car towns) shops)
(find-books (cdr towns))))))

Then calling (find-books towns) would at least get us what we wanted with
no more computation than necessary. But wait—isn’t it likely that at sometimein
the future we will want to do the same kind of search again? What we really want
hereisautility which combines find-if and some, returning both the successful
element, and the valuereturned by thetest function. Such autility could bedefined
as.

(defun find2 (fn 1st)
(if (null 1st)

nil
(let ((val (funcall fn (car 1st))))
(if val

(values (car 1lst) val)
(find2 fn (cdr 1st))))))

Notice the similarity between find-books and £ind2. Indeed, the latter could
be described as the skeleton of the former. Now, using the new utility, we can
achieve our original aim with a single expression:

(find2 #’bookshops towns)

One of the unique characteristics of Lisp programming is the important role
of functions as arguments. Thisis part of why Lisp iswell-adapted to bottom-up
programming. It's easier to abstract out the bones of a function when you can
pass the flesh back as a functional argument.

Introductory programming coursesteach early on that abstraction leadsto less
duplication of effort. One of the first lessons is; don’t wire in behavior. For
example, instead of defining two functions which do the same thing but for one
or two constants, define a single function and pass the constants as arguments.

4.2 INVEST IN ABSTRACTION 43

In Lisp we can carry this idea further, because we can pass whole functions as
arguments. In both of the previous examples we went from a specific function to
a more general function which took a functional argument. In the first case we
used the predefined mapcan and in the second we wrote a new utility, £ind2, but
the general principleis the same: instead of mixing the general and the specific,
define the general and pass the specific as an argument.

When carefully applied, this principle yields noticeably more elegant pro-
grams. It is not the only force driving bottom-up design, but it isamajor one. Of
the 32 utilities defined in this chapter, 18 take functional arguments.

4.2 |nvest in Abstraction

If brevity is the soul of wit, it is also, along with efficiency, the essence of good
software. The cost of writing or maintaining a program increases with its length.
All other things being equal, the shorter program is the better.

From this point of view, the writing of utilities should be treated as a capital
expenditure. By replacing find-books with the utility find2, we end up with
just as many lines of code. But we have made the program shorter in one sense,
because the length of the utility does not have to be charged against the current
program.

It isnot just an accounting trick to treat extensionsto Lisp as capital expendi-
tures. Utilities can go into a separate file; they will not clutter our view aswe're
working on the program, nor are they likely to be involved if we have to return
later to change the program in some respect.

As capital expenditures, however, utilities demand extra attention. It is espe-
cialy important that they be well-written. They are going to be used repeatedly,
so any incorrectness or inefficiency will be multiplied. Extra care must also go
into their design: anew utility must bewritten for the general case, not just for the
problem at hand. Finaly, like any capital expenditure, we need not be in a hurry
about it. If you're thinking of spinning off some new operator, but aren’t sure
that you will want it elsewhere, write it anyway, but leave it with the particular
program which usesit. Later if you use the new operator in other programs, you
can promoteit from a subroutine to a utility and make it generally accessible.

The utility £ind2 seemsto be agood investment. By making a capital outlay
of 7 lines, we get an immediate savings of 7. The utility has paid for itself in the
first use. A programming language, Guy Steele wrote, should “ cooperate with
our natural tendency towards brevity:”

...we tend to believe that the expense of a programming construct
is proportional to the amount of writer's cramp that it causes us (by
“belief” | mean here an unconscious tendency rather than a fervent

44 UTILITY FUNCTIONS

conviction). Indeed, this is not a bad psychologica principle for
language designers to keep in mind. We think of addition as cheap
partly because we can notate it with asingle character: “+". Even if
we believe that a construct is expensive, we will often prefer it to a
cheaper oneif it will cut our writing effort in half.

In any language, the “tendency towards brevity” will cause trouble unlessit is
allowed to vent itself in new utilities. The shortest idioms are rarely the most
efficient ones. If we want to know whether one list is longer than another, raw
Lisp will tempt us to write

(> (length x) (length y))

If wewant to map afunction over severa lists, wewill likewise betemptedto join
them together first:

(mapcar fn (append x y z))

Such examples show that it’'s especially important to write utilities for situations
we might otherwise handle inefficiently. A language augmented with the right
utilitieswill lead usto write more abstract programs. If these utilities are properly
defined, it will also lead us to write more efficient ones.

A collection of utilitieswill certainly make programming easier. But they can
do more than that: they can make you write better programs. The muses, like
cooks, spring into action at the sight of ingredients. This is why artists like to
have alot of tools and materiasin their studios. They know that they are more
likely to start something new if they have what they need ready at hand. The same
phenomenon appears with programs written bottom-up. Once you have written a
new utility, you may find yourself using it more than you would have expected.

The following sections describe several classes of utility functions. They do
not by any means represent all the different types of functions you might add to
Lisp. However, al the utilities given as examples are ones that have proven their
worth in practice.

4.3 Operationson Lists

Lists were originally Lisp’s main data structure. Indeed, the name “Lisp” comes
from “LISt Processing.” It is as well not to be misled by this historical fact,
however. Lisp is not inherently about processing lists any more than Polo shirts
arefor Polo. A highly optimized Common Lisp program might never see alist.
It would still be alist, though, at least at compile-time. The most sophisti-
cated programs, which use lists less at runtime, use them proportionately more at

4.3 OPERATIONS ON LISTS 45

(proclaim ’(inline lastl single appendl concl mklist))

(defun lastl (1st)
(car (last 1st)))

(defun single (1st)
(and (consp 1lst) (mot (cdr 1st))))

(defun appendl (lst obj)
(append 1st (list obj)))

(defun concl (1st obj)
(nconc 1st (list obj)))

(defun mklist (obj)
(if (listp obj) obj (list obj)))

Figure 4.1: Small functionswhich operate on lists.

compile-time, when generating macro expansions. So although therole of listsis
decreased in modern dialects, operationson lists can still make up the greater part
of aLisp program.

Figures 4.1 and 4.2 contain a selection of functions which build or examine
lists. Those given in Figure 4.1 are among the smallest utilities worth defining.
For efficiency, they should all be declared inline (page 26).

Thefirst, Last1, returnsthe last element in alist. The built-in function 1ast
returns the last cons in a list, not the last element. Most of the time one uses
it to get the last element, by saying (car (last ...)). Isit worth writing a
new utility for such a case? Yes, when it effectively replaces one of the built-in
operators.

Noticethat 1ast1 doesnoerror-checking. Ingeneral, noneof the code defined
inthisbook will do error-checking. Partly thisisjust to makethe examplesclearer.
But in shorter utilitiesit is reasonable not to do any error-checking anyway. If we

try:

> (lastl "blub")
>>Error: "blub" is not a list.
Broken at LAST...

the error will be caught by 1ast itself. When utilities are small, they form alayer
of abstraction so thin that it starts to be transparent. As one can see through athin

46 UTILITY FUNCTIONS

layer of ice, one can seethrough utilitieslike 1ast1 tointerpret errorswhich arise
in the underlying functions.

The function single tests whether something is alist of one element. Lisp
programs need to make thistest rather often. At first one might be tempted to use
the natural trandation from English:;

(= (length 1st) 1)

Written thisway, the test would be very inefficient. We know all we need to know
as soon as we've looked past the first element.

Next come appendl and concl. Both attach a new element to the end of a
list, the latter destructively. These functions are small, but so frequently needed
that they are worth defining. Indeed, append1 has been predefined in previous
Lisp dialects.

So hasmk1ist, which was predefined in (at least) Interlisp. Its purposeisto
ensure that somethingisalist. Many Lisp functions are written to return either a
single value or alist of values. Suppose that Lookup is such a function, and that
we want to collect theresults of calling it on al the elementsof alist called data.
We can do so by writing:

(mapcan #’(lambda (d) (mklist (lookup d)))
data)

Figure 4.2 contains some larger examplesof list utilities. Thefirst, Longer, is
useful from the point of view of efficiency aswell as abstraction. It comparestwo
sequences and returnstrue only if thefirst islonger. When comparing the lengths
of two lists, it is tempting to do just that:

(> (length x) (length y))

This idiom is inefficient because it requires the program to traverse the entire
length of both lists. If one list is much longer than the other, all the effort of
traversing the difference in their lengths will be wasted. It is faster to do as
longer does and traverse the two listsin paralléel.

Embedded within longer is a recursive function to compare the lengths of
two lists. Since longer is for comparing lengths, it should work for anything
that you could give as an argument to length. But the possibility of comparing
lengths in parallel only applies to lists, so the internal function is only called if
both arguments are lists.

The next function, filter, iSto some what remove-if-not isto find-if.
Thebuilt-in remove-if-not returnsall the values that might have been returned
if you called find-if with the same function on successive cdrs of alist. Analo-
goudly, filter returnswhat some would have returned for successive cdrs of the
list:

4.3 OPERATIONS ON LISTS 47

(defun longer (x y)
(labels ((compare (x y)
(and (consp x)
(or (null y)
(compare (cdr x) (cdr y))))))
(if (and (listp x) (listp y))
(compare x y)
(> (length x) (length y)))))

(defun filter (fn 1st)
(let ((acc nil))
(dolist (x 1st)
(let ((val (funcall fn x)))
(if val (push val acc))))
(nreverse acc)))

(defun group (source n)
(if (zerop n) (error "zero length"))
(labels ((rec (source acc)
(let ((rest (nthcdr n source)))
(if (consp rest)
(rec rest (cons (subseq source 0 n) acc))
(nreverse (cons source acc))))))
(if source (rec source nil) nil)))

Figure 4.2: Larger functionsthat operate on lists.

> (filter #’(lambda (x) (if (numberp x) (1+ x)))
’@12b3cd4d)
(2 345)

You give filter afunction and a list, and get back a list of whatever non-nil
values are returned by the function asit is applied to the elements of the list.

Noticethat filter usesan accumulator in the same way as the tail-recursive
functions described in Section 2.8. Indeed, the aim in writing a tail-recursive
function is to have the compiler generate code in the shape of filter. For
filter, the straightforward iterative definition is simpler than the tail-recursive
one. The combination of push and nreverse in the definition of filter isthe
standard Lisp idiom for accumulating alist.

The last function in Figure 4.2 is for grouping lists into sublists. You give
group alist | and anumber n, and it will return anew list in which the elements

48 UTILITY FUNCTIONS

of | are grouped into sublists of length n. The remainder is put in afina sublist.
Thusif we give 2 as the second argument, we get an assoc-list:

> (group ’(abcdef g) 2)
((AB) (CD) (EF) (G))

This function is written in a rather convoluted way in order to make it tail-
recursive (Section 2.8). The principle of rapid prototyping applies to individual
functionsas well asto whole programs. When writing afunctionlikeflatten, it
can beagood ideato begin with the simplest possibleimplementation. Then, once
the simpler version works, you can replace it if necessary with a more efficient
tail-recursive or iterative version. If it's short enough, the initial version could be
left as a comment to describe the behavior of its replacement. (Simpler versions
of group and severa other functions in Figures 4.2 and 4.3 are included in the
note on page 389.)

The definition of group is unusual in that it checks for at least one error: a
second argument of 0, which would otherwise send the function into an infinite
recursion.

In one respect, the examplesin this book deviate from usual Lisp practice: to
make the chapters independent of one another, the code examples are as much as
possible written in raw Lisp. Becauseit is so useful in defining macros, group is
an exception, and will reappear at several pointsin later chapters.

Thefunctionsin Figure 4.2 all work their way along the top-level structure of
alist. Figure 4.3 shows two examples of functions that descend into nested lists.
The first, flatten, was aso predefined in Interlisp. It returns alist of al the
atomsthat are elements of alist, or elements of its elements, and so on:

> (flatten ’(a (b c) ((d e) £)))
(ABCDETPF)

The other functionin Figure 4.3, prune, isto remove-if ascopy-treeisto
copy-list. Thatis, it recurses down into sublists:

> (prune #’evenp (1 2 (3 (4 5) 6) 7 8 (9)))
1 (3 ((B)) 7 (9))

Every leaf for which the function returnstrue is removed.

4.4 Search

This section gives some examples of functions for searching lists. Common
Lisp provides a rich set of built-in operators for this purpose, but some tasks

4.4 SEARCH 49

(defun flatten (x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (coms x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))

(defun prune (test tree)
(labels ((rec (tree acc)
(cond ((null tree) (nreverse acc))
((consp (car tree))
(rec (cdr tree)
(cons (rec (car tree) nil) acc)))
(t (rec (cdr tree)
(if (funcall test (car tree))
acc
(cons (car tree) acc)))))))
(rec tree nil)))

Figure 4.3: Doubly-recursivelist utilities.

are still difficult—or at least difficult to perform efficiently. We saw this in the
o hypothetical case described on page 41. Thefirst utility in Figure 4.4, £ind2, is
the one we defined in responseto it.
The next utility, before, iswritten with similar intentions. It tells you if one
object is found before another in alist:

> (before ’b ’d ’(a b ¢ d))
(B CD)

Itis easy enough to do this sloppily in raw Lisp:
(< (position ’b ’(a b ¢ d)) (position ’d ’(a b c d)))

But the latter idiom is inefficient and error-prone: inefficient because we don’t
need to find both objects, only the one that occurs first; and error-prone because
if either object isn't in the list, nil will be passed as an argument to <. Using
before fixes both problems.

Since before is similar in spirit to a test for membership, it is written to
resemble the built-in member function. Like member it takes an optional test
argument, which defaults to eql. Also, instead of simply returning t, it tries to

50 UTILITY FUNCTIONS

(defun find2 (fn 1lst)
(if (null 1st)

nil
(let ((val (funcall fn (car 1lst))))
(if val

(values (car 1lst) val)
(find2 fn (cdr 1st))))))

(defun before (x y 1lst &key (test #’eql))
(and 1st
(let ((first (car 1st)))
(cond ((funcall test y first) nil)
((funcall test x first) lst)
(t (before x y (cdr lst) :test test))))))

(defun after (x y lst &key (test #’eql))
(let ((rest (before y x lst :test test)))
(and rest (member x rest :test test))))

(defun duplicate (obj lst &key (test #’eql))
(member obj (cdr (member obj 1lst :test test))
:test test))

(defun split-if (fn 1st)
(let ((acc nil))
(do ((src 1lst (cdr src)))
((or (null src) (funcall fn (car src)))
(values (nreverse acc) src))
(push (car src) acc))))

Figure 4.4: Functions which search lists.

return potentially useful information: the cdr beginning with the object given as
the first argument.

Note that before returns true if we encounter the first argument before en-
countering the second. Thus it will return true if the second argument doesn’t
occur inthelist at al:

> (before ’a ’b ’(a))
()

We can peform a more exacting test by calling after, which requires that both

4.4 SEARCH 51

its arguments occur in the list:

> (after ’a ’b (b a d))
(A D)

> (after ’a ’b ’(a))

NIL

If (member o I) finds o in thelist |, it aso returns the cdr of | beginning
with o. Thisreturn value can be used, for example, to test for duplication. If ois
duplicatedin|, then it will also be found in the cdr of thelist returned by member.
Thisidiom isembodied in the next utility, duplicate:

> (duplicate ’a ’(a b ¢ a d))
(A D)

Other utilities to test for duplication could be written on the same principle.

More fastidious language designers are shocked that Common Lisp usesnil
to represent both falsity and the empty list. It does cause trouble sometimes (see
Section 14.2), but it is convenient in functions like duplicate. In questions of
sequence membership, it seems natural to represent falsity asthe empty sequence.

The last function in Figure 4.4 is also a kind of generalization of member.
While member returns the cdr of the list beginning with the element it finds,
split-if returns both halves. This utility is mainly used with lists that are
ordered in some respect:

> (split-if #’(lambda (x) (> x 4))
’(12345678910))

(123 4)

(6 6789 10)

Figure 4.5 contains search functions of another kind: those which compare
elements against one another. Thefirst, most, looks at one element at atime. It
takes alist and a scoring function, and returns the element with the highest score.
In case of ties, the element occurring first wins.

> (most #’length ’((a b) (a b c) (a) (e £ g)))
(A BC)
3

For convenience, most also returns the score of the winner.

A more general kind of search is provided by best. This utility also takes a
function and alist, but here the function must be a predicate of two arguments. It
returns the element which, according to the predicate, beats all the others.

52 UTILITY FUNCTIONS

(defun most (fn 1lst)
(if (null 1st)
(values nil nil)
(let* ((wins (car 1lst))
(max (funcall fn wins)))
(dolist (obj (cdr 1st))
(let ((score (funcall fn obj)))
(when (> score max)
(setq wins obj
max score))))
(values wins max))))

(defun best (fn 1lst)
(if (null 1st)
nil
(let ((wins (car 1st)))
(dolist (obj (cdr 1st))
(if (funcall fn obj wins)
(setq wins obj)))
wins)))

(defun mostn (fn 1lst)
(if (null 1st)
(values nil nil)
(let ((result (list (car 1st)))
(max (funcall fn (car 1st))))
(dolist (obj (cdr 1st))
(let ((score (funcall fn obj)))
(cond ((> score max)
(setq max score
result (list obj)))
((= score max)
(push obj result)))))
(values (nreverse result) max))))

Figure 4.5: Search functions which compare elements.

> (best #’> (1 2 3 4 5))
5

We canthink of best as being equivalent to car of sort, but much moreefficient.

4.5 MAPPING 53

It is up to the caller to provide a predicate which defines a total order on the
elements of the list. Otherwise the order of the elementswill influence the result;
as before, in case of ties, the first element wins.

Finally, mostn takes afunction and alist and returns alist of al the elements
for which the function yields the highest score (along with the score itself):

> (mostn #’length *((a b) (abc) (a) (e £ g))
((ABC) (EF &)
3

4.5 Mapping

Another widely used class of Lisp functions are the mapping functions, which
apply afunction to a sequence of arguments. Figure 4.6 shows some examples of
new mapping functions. The first three are for applying a function to a range of
numbers without having to cons up alist to contain them. The first two, mapO-n
and map1-n, work for ranges of positive integers:

> (mapO-n #’1+ 5)
(123456)

Both are written using the more general mapa-b, which works for any range of
numbers:

> (mapa-b #’1+ -2 0 .5)
(-1 -0.5 0.0 0.5 1.0)

Followingmapa-b isthe still more general map->, which worksfor sequences
of objects of any kind. The sequence begins with the object given as the second
argument, the end of the sequence is defined by the function given as the third
argument, and successors are generated by the function given as the fourth argu-
ment. With map-> it is possible to navigate arbitrary data structures, as well as
operate on sequences of numbers. We could definemapa-b in terms of map-> as
follows:

(defun mapa-b (fn a b &optional (step 1))
(map-> fn
a
#’ (lambda (x) (> x b))
#’ (lambda (x) (+ x step))))

UTILITY FUNCTIONS

(defun mapO-n (fn n)
(mapa-b fn 0 n))

(defun mapl-n (fn n)
(mapa-b fn 1 n))

(defun mapa-b (fn a b &optional (step 1))
(do ((i a (+ i step))
(result nil))
((> i b) (nreverse result))
(push (funcall fn i) result)))

(defun map-> (fn start test-fn succ-fn)
(do ((i start (funcall succ-fn i))
(result nil))

((funcall test-fn i) (nreverse result))
(push (funcall fn i) result)))

(defun mappend (fn &rest 1lsts)
(apply #’append (apply #’mapcar fn lsts)))

(defun mapcars (fn &rest lsts)
(let ((result nil))
(dolist (1st 1lsts)
(dolist (obj 1lst)

(push (funcall fn obj) result)))
(nreverse result)))

(defun rmapcar (fn &rest args)
(if (some #’atom args)
(apply fn args)
(apply #’mapcar
#’ (lambda (&rest args)

(apply #’rmapcar fn args))
args)))

Figure 4.6: Mapping functions.

4.5 MAPPING 55

For efficiency, the built-inmapcan is destructive. It could be duplicated by:

(defun our-mapcan (fn &rest lsts)
(apply #’nconc (apply #’mapcar fn lsts)))

Because mapcan splices together lists with nconc, the lists returned by the first
argument had better be newly created, or the next time we look at them they
might be altered. That's why nicknames (page 41) was defined as a function
which “builds alist” of nicknames. If it smply returned alist stored elsewhere,
it wouldn't have been safe to use mapcan. Instead we would have had to splice
the returned lists with append. For such cases, mappend offers a nondestructive
aternativeto mapcan.

The next utility, mapcars, is for cases where we want to mapcar a function
over severd lists. If we have two lists of numbers and we want to get asinglelist
of the square roots of both, using raw Lisp we could say

(mapcar #’sqrt (append listl 1ist2))

but this conses unnecessarily. We append together 1ist1 and 1ist2 only to
discard the result immediately. With mapcars we can get the same result from:

(mapcars #’sqrt listl 1list2)

and do no unnecessary consing.

The final function in Figure 4.6 is a version of mapcar for trees. Its name,
rmapcar, is short for “recursive mapcar,” and what mapcar does on flat lists, it
doeson trees:

> (rmapcar #’princ (1 2 (3 4 (5) 6) 7 (8 9)))
123456789
(12 (34 () 6)7 (89

Likemapcar, it can take more than one list argument.

> (rmapcar #’+ (1 (2 (3) 4)) ’(10 (20 (30) 40)))
(11 (22 (33) 44))

Several of the functions which appear later on ought really to cal rmapcar,
including rep_ on page 324.

To some extent, traditional list mapping functions may be rendered obsolete
by the new series macrosintroduced in CLTL2. For example,

(mapa-b #’fn a b c¢)

could be rendered

56 UTILITY FUNCTIONS

(defun readlist (&rest args)
(values (read-from-string
(concatenate ’string " ("
(apply #’read-line args)
")")))

(defun prompt (&rest args)
(apply #’format *query-io* args)
(read *query-io*))

(defun break-loop (fn quit &rest args)
(format *query-iox "Entering break-loop.~%")
(1oop
(let ((in (apply #’prompt args)))
(if (funcall quit in)
(return)
(format *query-iox ""A~Y" (funcall fn in))))))

Figure4.7: 1/O functions.

(collect (#Mfn (scan-range :from a :upto b :by c)))

However, thereis still some call for mapping functions. A mapping function may
in some cases be clearer or more elegant. Some things we could express with
map-> might be difficult to express using series. Finaly, mapping functions, as
functions, can be passed as arguments.

46 1/0

Figure 4.7 contains three examples of 1/0 utilities. The need for this kind of
utility varies from program to program. Those in Figure 4.7 are just a represen-
tative sample. Thefirst isfor the case where you want users to be able to typein
expressions without parentheses; it reads aline of input and returnsit asalist:

> (readlist)
Call me "E4"
(CALL ME "E4")

Thecall to values ensuresthat we get only onevalue back (read-from-string
itself returns a second value that isirrelevant in this case).

4.7 SYMBOLS AND STRINGS 57

The function prompt combines printing a question and reading the answer. It
takes the arguments of format, except the initial stream argument.

> (prompt "Enter a number between “A and "A.7Y>> " 1 10)
Enter a number between 1 and 10.

>> 3

3

Finally, break-1loop isfor situations where you want to imitate the Lisp toplevel.
It takes two functions and an &rest argument, which is repeatedly given to
prompt. As long as the second function returns false for the input, the first
function is applied to it. So for example we could simulate the actual Lisp
toplevel with:

> (break-loop #’eval #’(lambda (x) (eq x :q@)) ">> ")
Entering break-loop.

>> (+ 2 3)

5

>> :q

:Q

This, by the way, is the reason Common Lisp vendors generally insist on runtime
licenses. If you cancall eval at runtime, then any Lisp program can include Lisp.

4.7 Symbolsand Strings

Symbols and strings are closely related. By means of printing and reading
functions we can go back and forth between the two representations. Figure 4.8
contains examples of utilities which operate on this border. The first, mkstr,
takes any number of argumentsand concatenatestheir printed representati onsinto
astring:

> (mkstr pi " pieces of " ’pi)
"3.141592653589793 pieces of PI"

Built uponit is symb, which is mostly used for building symbols. It takes one or
more arguments and returns the symbol (creating one if necessary) whose print-
name is their concatenation. It can take as an argument any object which has a
printable representation: symbols, strings, numbers, even lists.

> (symb ’ar "Madi" #\L #\L 0)
| ARMadiLLO|

58 UTILITY FUNCTIONS

(defun mkstr (&rest args)
(with-output-to-string (s)
(dolist (a args) (princ a s))))

(defun symb (&rest args)
(values (intern (apply #’mkstr args))))

(defun reread (&rest args)
(values (read-from-string (apply #’mkstr args))))

(defun explode (sym)
(map ’list #’(lambda (c)
(intern (make-string 1
:initial-element c)))
(symbol-name sym)))

Figure 4.8: Functions which operate on symbols and strings.

After calling mkstr to concatenate al its arguments into a single string, symb
sends the string to intern. ThisfunctionisLisp’s traditional symbol-builder: it
takes a string and either finds the symbol which prints as the string, or makes a
new one which does.

Any string can be the print-name of a symbol, even a string containing lower-
case letters or macro characterslike parentheses. When a symbol’s name contains
such oddities, it is printed within vertical bars, as above. In source code, such
symbols should either be enclosed in vertical bars, or the offending characters
preceded by backslashes:

> (let ((s (symb ’(a b))))
(and (eq s | (A B)I) (eq s ’\(A\ B\))))
T

The next function, reread, is a generadization of symb. It takes a series of
objects, and prints and rereads them. It can return symbols like symb, but it can
also return anything else that read can. Read-macros will be invoked instead of
being treated as part of a symbol’s name, and a:b will be read as the symbol b
in package a, instead of the symbol |a:b| in the current package.! The more
general function is aso pickier: reread will generate an error if its arguments
are not proper Lisp syntax.

1For an introduction to packages, see the Appendix beginning on page 381.

4.8 DENSITY 59

The last function in Figure 4.8 was predefined in several earlier diaects:
explode takes a symbol and returns alist of symbols made from the characters
inits name.

> (explode ’bomb)
(B OMB)

It is no accident that this function wasn’t included in Common Lisp. If you
find yourself wanting to take apart symbols, you're probably doing something
inefficient. However, thereis a place for this kind of utility in prototypes, if not
in production software.

4.8 Density

If your code usesalot of new utilities, somereadersmay complainthat it ishard to
understand. Peoplewho are not yet very fluentin Lispwill only beused to reading
raw Lisp. In fact, they may not be used to the idea of an extensible language at
all. When they look at a program which depends heavily on utilities, it may seem
to them that the author has, out of pure eccentricity, decided to write the program
in some sort of private language.

All these new operators, it might be argued, make the program harder to read.
One has to understand them all before being able to read the program. To see
why this kind of statement is mistaken, consider the case described on page 41,
in which we want to find the nearest bookshops. If you wrote the program using
find2, someone could complain that they had to understand the definition of this
new utility before they could read your program. Well, suppose you hadn’t used
find2. Then, instead of having to understand the definition of £ind2, the reader
would have had to understand the definition of £ ind-books, inwhich thefunction
of £ind2 is mixed up with the specific task of finding bookshops. It is no more
difficult to understand £ ind2 than find-books. And here we have only used the
new utility once. Utilities are meant to be used repeatedly. In areal program, it
might be a choi ce between having to understand £ ind2, and having to understand
three or four specialized search routines. Surely the former is easier.

So yes, reading a bottom-up program requires one to understand all the new
operators defined by the author. But this will nearly always be less work than
having to understand all the code that would have been required without them.

If people complain that using utilities makes your code hard to read, they
probably don't realize what the code would look like if you hadn’'t used them.
Bottom-up programming makes what would otherwise be a large program look
like asmall, smple one. This can give the impression that the program doesn’t
do much, and should therefore be easy to read. When inexperienced readers|ook
closer and find that thisisn’t so, they react with dismay.

60 UTILITY FUNCTIONS

We find the same phenomenon in other fields: a well-designed machine may
have fewer parts, and yet look more complicated, because it is packed into a
smaller space. Bottom-up programsare conceptually denser. It may take an effort
to read them, but not as much asit would take if they hadn’t been written that way.

There is one case in which you might deliberately avoid using utilities: if
you had to write a small program to be distributed independently of the rest of
your code. A utility usually pays for itself after two or three uses, but in a small
program, a utility might not be used enough to justify including it.

Returning Functions

The previous chapter showed how the ability to pass functions as arguments|eads
to greater possibilitiesfor abstraction. The more we can do to functions, the more
we can take advantage of these possihilities. By defining functions to build and
return new functions, we can magnify the effect of utilities which take functions
as arguments.

The utilities in this chapter operate on functions. It would be more natural, at
least in Common Lisp, to write many of them to operate on expressions—that is,
as macros. A layer of macros will be superimposed on some of these operators
in Chapter 15. However, it is important to know what part of the task can be
done with functions, even if we will eventually call these functions only through
macros.

5.1 Common Lisp Evolves

Common Lisp originally provided several pairsof complementary functions. The
functions remove-if and remove-if-not make one such pair. If pred isa
predicate of one argument, then

(remove-if-not #’pred lst)
isequivalent to

(remove-if #’(lambda (x) (not (pred x))) lst)

61

62 RETURNING FUNCTIONS

By varying the function given as an argument to one, we can duplicate the
effect of the other. In that case, why have both? CLTL2 includes a new function
intended for caseslikethis: complement takesapredicate p and returnsafunction
which always returns the opposite value. When p returns true, the complement
returns false, and vice versa. Now we can replace

(remove-if-not #’pred lst)
with the equivalent
(remove-if (complement #’pred) 1lst)

With complement, thereis little justification for continuing to use the -if-not
functions. Indeed, cLTL2 (p. 391) says that their use is now deprecated. If they
remain in Common Lisp, it will only be for the sake of compatibility.

The new complement operator is the tip of an important iceberg: functions
which return functions. This has long been an important part of the idiom of
Scheme. Scheme was the first Lisp to make functions lexical closures, and it is
this which makes it interesting to have functions as return values.

It's not that we couldn’t return functions in a dynamically scoped Lisp. The
following function would work the same under dynamic or lexical scope:

(defun joiner (obj)
(typecase obj
(cons #’append)
(number #°+)))

It takes an object and, depending on itstype, returns afunction to add such objects
together. We could use it to define a polymorphic join function that worked for
numbersor lists:

(defun join (&rest args)
(apply (joiner (car args)) args))

However, returning constant functionsisthelimit of what we can do with dynamic
scope. What we can't do (well) is build functions at runtime; joiner can return
one of two functions, but the two choices are fixed.

On page 18 we saw ancther function for returning functions, which relied on
lexical scope:

(defun make-adder (n)
#’ (lambda (x) (+ x n)))

1Except perhaps remove-if-not, which is used more often than remove-if.

52 ORTHOGONALITY 63

Calling make-adder will yield a closure whose behavior depends on the value
originally given as an argument;

> (setq add3 (make-adder 3))
#<Interpreted-Function BF1356>
> (funcall add3 2)

5

Under lexical scope, instead of merely choosing among a group of constant func-
tions, we can build new closures at runtime. With dynamic scope this technique
isimpossible.? If we consider how complement would be written, we see that it
too must return a closure:

(defun complement (fn)
#’ (lambda (&rest args) (not (apply fn args))))

The function returned by complement uses the value of the parameter £n when
complement was called. So instead of just choosing from a group of constant
functions, complement can custom-build the inverse of any function:

> (remove-if (complement #’oddp) (1 2 3 4 5 6))
(135)

Being able to pass functions as arguments is a powerful tool for abstraction.
The ability to write functions which return functions allows us to make the most
of it. The remaining sections present several examples of utilities which return
functions.

5.2 Orthogonality

Anorthogonal languageisoneinwhichyou can expressalot by combining asmall
number of operatorsin alot of different ways. Toy blocks are very orthogonal; a
plastic model kit is hardly orthogonal at all. The main advantage of complement
is that it makes a language more orthogonal. Before complement, Common
Lisp had pairs of functionslike remove-if and remove-if-not, subst-if and
subst-if-not, and so on. With complement we can do without half of them.
The setf macro also improves Lisp’s orthogonality. Earlier dialects of Lisp
would often have pairs of functionsfor reading and writing data. With property-
lists, for example, there would be one function to establish properties and another
function to ask about them. In Common Lisp, we have only the latter, get. To

2Under dynamic scope, we could write something like make-adder, but it would hardly ever
work. The binding of n would be determined by the environment in which the returned function was
eventually called, and we might not have any control over that.

64 RETURNING FUNCTIONS

(defvar *!equivs* (make-hash-table))

(defun ! (£fn)
(or (gethash fn *!equivs*) fn))

(defun def! (fn fn!)
(setf (gethash fn *!equivs*) fn!))

Figure 5.1: Returning destructive equivalents.

establish a property, we use get in combination with setf:
(setf (get ’ball ’color) ’red)

We may not be able to make Common Lisp smaller, but we can do something
almost asgood: useasmaller subset of it. Can we defineany new operatorswhich
would, like complement and setf, help us toward this goa? Thereis at least
one other way in which functions are grouped in pairs. Many functionsalso come
in a destructive version: remove-if and delete-if, reverse and nreverse,
append and nconc. By defining an operator to return the destructive counterpart
of afunction, we would not have to refer to the destructive functions directly.

Figure 5.1 contains code to support the notion of destructive counterparts.
Theglobal hash-table * ! equivs* mapsfunctionsto their destructive equivalents;
! returns destructive equivalents; and def ! sets them. The name of the ! (bang)
operator comes from the Scheme convention of appending ! to the names of
functionswith side-effects. Now once we have defined

(def! #’remove-if #’delete-if)

then instead of

(delete-if #’0ddp lst)

we would say

(funcall (! #’remove-if) #’oddp 1lst)

Here the awkwardness of Common Lisp masks the basic elegance of the idea,
which would be more visible in Scheme:

((! remove-if) oddp 1lst)

53 MEMOIZING 65

(defun memoize (fn)
(let ((cache (make-hash-table :test #’equal)))
#’ (lambda (&rest args)
(multiple-value-bind (val win) (gethash args cache)

(if win
val
(setf (gethash args cache)

(apply fn args)))))))

Figure 5.2: Memoizing utility.

Aswell as greater orthogonality, the ! operator brings a couple of other bene-
fits. It makes programs clearer, because we can see immediately that (! #’foo)
is the destructive equivalent of foo. Also, it gives destructive operations a dis-
tinct, recognizableform in source code, whichis good because they should receive
special attention when we are searching for a bug.

Since the relation between a function and its destructive counterpart will
usualy be known before runtime, it would be most efficient to define ! as a
macro, or even provide aread macro for it.

5.3 Memoizing

If some function is expensive to compute, and we expect sometimes to make the
same call more than once, then it pays to memoize: to cache the return values of
all the previouscalls, and each time the functionis about to be called, to look first
in the cacheto seeif the value is already known.

Figure 5.2 contains a generalized memoizing utility. We give a function to
memoize, and it returns an equival ent memoized version—aclosure containing a
hash-table in which to store the results of previous calls.

> (setq slowid (memoize #’(lambda (x) (sleep 5) x)))
#<Interpreted-Function C38346>

> (time (funcall slowid 1))

Elapsed Time = 5.15 seconds

1

> (time (funcall slowid 1))

Elapsed Time = 0.00 seconds

1

With a memoized function, repeated calls are just hash-table lookups. There is
of course the additional expense of a lookup on each initial call, but since we

66 RETURNING FUNCTIONS

(defun compose (&rest fns)
(if fns
(let ((fnl (car (last fns)))
(fns (butlast fns)))
#’ (lambda (&rest args)
(reduce #’funcall fns
:from-end t
:initial-value (apply fnl args))))
#’identity))

Figure 5.3: An operator for functional composition.

would only memoize a function that was sufficiently expensive to compute, it's
reasonable to assume that this cost is insignificant in comparison.

Though adequate for most uses, this implementation of memoize has several
limitations. Ittreatscallsasidentical if they have equal argument lists; this could
betoo strict if the function had keyword parameters. Also, it is intended only for
single-valued functions, and cannot store or return multiple values.

5.4 Composing Functions

The complement of afunction f is denoted ~f. Section 5.1 showed that closures
make it possible to define ~ as a Lisp function. Another common operation on
functionsis composition, denoted by the operator o. If f and g are functions, then
fog is also afunction, and fog(x) = f(g(x)). Closures also make it possible to
define o asaLisp function.

Figure 5.3 defines a compose function which takes any number of functions
and returnstheir composition. For example

(compose #’list #’1+)
returns a function equivalent to
#’ (lambda (x) (1ist (1+ x)))

All the functions given as arguments to compose must be functions of one argu-
ment, except the last. On the last function there are no restrictions, and whatever
argumentsit takes, so will the function returned by compose:

> (funcall (compose #’1+ #’find-if) #’oddp ’(2 3 4))
4

54 COMPOSING FUNCTIONS 67

(defun fif (if then &optional else)
#’ (lambda (x)
(if (funcall if x)
(funcall then x)
(if else (funcall else x)))))

(defun fint (fn &rest fns)
(if (null fns)
fn
(let ((chain (apply #’fint fns)))
#’ (lambda (x)
(and (funcall fn x) (funcall chain x))))))

(defun fun (fn &rest fns)
(if (null fns)
fn
(let ((chain (apply #’fun fns)))
#’ (lambda (x)
(or (funcall fn x) (funcall chain x))))))

Figure 5.4: More function builders.

Sincenot isalLisp function, complement isaspecial case of compose. It could
be defined as:

(defun complement (pred)
(compose #’not pred))

We can combine functions in other ways than by composing them. For
example, we often see expressions like

(mapcar #’(lambda (x)
(if (slave x)
(owner x)
(employer x)))
people)

We could define an operator to build functionslike this one automatically. Using
fif from Figure 5.4, we could get the same effect with:

(mapcar (fif #’slave #’owner #’employer)
people)

68 RETURNING FUNCTIONS

Figure 5.4 contains several other constructors for commonly occurring types
of functions. The second, fint, isfor caseslike this:

(find-if #’ (lambda (x)
(and (signed x) (sealed x) (delivered x)))
docs)

Thepredicate given asthe second argument to £ ind-if definestheintersection of
the three predicates called within it. With £int, whose name stands for “function
intersection,” we can say:

(find-if (fint #’signed #’sealed #’delivered) docs)

We can define a similar operator to return the union of a set of predicates. The
function fun islike fint but uses or instead of and.

55 Recursion on Cdrs

Recursive functions are so important in Lisp programs that it would be worth
having utilities to build them. This section and the next describe functions which
build the two most common types. In Common Lisp, these functions are a little
awkward to use. Once we get into the subject of macros, we will see how to
put a more elegant facade on this machinery. Macros for building recursers are
discussed in Sections 15.2 and 15.3.

Repeated patternsin a program are a sign that it could have been written at a
higher level of abstraction. What patternis morecommonly seenin Lisp programs
than afunction like this:

(defun our-length (1st)
(if (null 1st)
0
(1+ (our-length (cdr 1st)))))

or this:

(defun our-every (fn lst)
(if (null 1st)
t
(and (funcall fn (car 1st))
(our-every fn (cdr 1st)))))

Structurally these two functions have a lot in common. They both operate recur-
sively on successive cdrs of alist, evaluating the same expression on each step,

55 RECURSION ON CDRS 69

(defun lrec (rec &optional base)
(labels ((self (1st)
(if (null 1st)

(if (functionp base)
(funcall base)
base)

(funcall rec (car 1lst)

#’ (lambda ()
(self (cdr 1st)))))))
#’self))

Figure 5.5: Function to defineflat list recursers.

except in the base case, where they return a distinct value. This pattern appears
so frequently in Lisp programsthat experienced programmers can read and repro-
duce it without stopping to think. Indeed, the lesson is so quickly learned, that
the question of how to package the pattern in a new abstraction does not arise.

However, a patterniit is, al the same. Instead of writing these functions out
by hand, we should be able to write a function which will generate them for us.
Figure 5.5 contains a function-builder called 1rec (“list recurser”) which should
be able to generate most functionsthat recurse on successive cdrs of alist.

The first argument to 1rec must be a function of two arguments: the current
car of thelist, and afunction which can be called to continue the recursion. Using
lrec we could express our-length as

(lrec #’ (lambda (x f) (1+ (funcall f))) 0)

To find the length of the list, we don’t need to look at the elements, or stop part-
way, so the object x isalwaysignored, and the function £ alwayscalled. However,
we need to take advantage of both possibilities to express our-every, for e.g.
oddpﬁ

(1rec #’ (lambda (x f) (and (oddp x) (funcall £))) t)

The definition of 1rec uses labels to build aloca recursive function called
self. Intherecursive case the function rec is passed two arguments, the current
car of the list, and a function embodying the recursive call. In functions like
our-every, wheretherecursive caseis an and, if the first argument returnsfalse
wewant to stop right there. Which meansthat the argument passed in therecursive

3In one widely used Common Lisp, functionp erroneously returns true for t+ and nil. In that
implementation it won't work to give either as the second argument to 1rec.

70 RETURNING FUNCTIONS

; copy-list
(lrec #’(lambda (x f) (cons x (funcall £))))

; remove—-duplicates
(l1rec #’(lambda (x f) (adjoin x (funcall £))))

; find-if, for some function fn
(1rec #’(lambda (x f) (if (fn x) x (funcall £))))

; some, for some function fn
(lrec #’ (lambda (x f) (or (fn x) (funcall £))))

Figure 5.6: Functions expressed with 1rec.

case must not be a value but afunction, which we can call (if we want) in order to
get avalue.

Figure 5.6 shows some existing Common Lisp functions defined with 1rec.*
Calling 1rec will not aways yield the most efficient implementation of a given
function. Indeed, 1rec and the other recurser generators to be defined in this
chapter tend to lead one away from tail-recursive solutions. For this reason they
are best suited for use in initial versions of a program, or in parts where speed is
not critical.

5.6 Recursion on Subtrees

There is another recursive pattern commonly found in Lisp programs. recursion
on subtrees. This pattern is seen in cases where you begin with a possibly nested
list, and want to recurse down both its car and its cdr.

The Lisp list is aversatile structure. Lists can represent, among other things,
sequences, sets, mappings, arrays, and trees. There are severa different ways to
interpret alist as atree. The most common is to regard the list as a binary tree
whose |eft branch is the car and whose right branch is the cdr. (In fact, thisis
usually the internal representation of lists.) Figure 5.7 shows three examples of
lists and the trees they represent. Each internal node in such a tree corresponds
to adot in the dotted-pair representation of the list, so the tree structure may be

4In some implementations, you may have to set *print-circlex to t before these functions can
be displayed.

5.6 RECURSION ON SUBTREES 71

(a . b) (a b c) (ab (c d))

Figure5.7: Lists astrees.

easier to interpret if the lists are considered in that form:

(a b c) = (a. (b . (c . nil)))
(a b (c 4) (a. (b. ((c. (d.nil)) . nil)))

Any list can be interpreted as a binary tree. Hence the distinction between pairs
of Common Lisp functionslike copy-1ist and copy-tree. The former copies
alist asasequence—if thelist contains sublists, the sublists, being mere elements
in the sequence, are not copied:

> (setq x >(a b)
listx (list x 1))
((AB) 1)
> (eq x (car (copy-list listx)))
T

In contrast, copy-tree copiesalist as atree—sublists are subtrees, and so must
also be copied:

> (eq x (car (copy-tree listx)))
NIL

We could define aversion of copy-tree asfollows:

72 RETURNING FUNCTIONS

(defun our-copy-tree (tree)
(if (atom tree)
tree
(cons (our-copy-tree (car tree))
(if (cdr tree) (our-copy-tree (cdr tree))))))

This definition turns out to be one instance of a common pattern. (Some of the
following functionsarewritten alittle oddly in order to make the pattern obvious.)
Consider for example a utility to count the number of leavesin atree:

(defun count-leaves (tree)
(if (atom tree)
1
(+ (count-leaves (car tree))
(or (if (cdr tree) (count-leaves (cdr tree)))

1N
A tree has more |leaves than the atoms you can see when it is represented as alist:

> (count-leaves ’((a b (c d)) (e) £))
10

The leaves of atree are al the atoms you can see when you look at the tree in
its dotted-pair representation. In dotted-pair notation, ((a b (¢ d)) (e) £)
would have four nils that aren’t visible in the list representation (one for each
pair of parentheses) so count-leaves returns 10.

In the last chapter we defined severa utilities which operate on trees. For
example, flatten (page 47) takes atree and returns a list of all the atomsin it.
Thatis, if yougiveflatten anested list, you'll get back alist that looksthe same
except that it's missing all but the outermost pair of parentheses:

> (flatten ’((a b (c d)) (e) £ O))
(ABCDETF)

This function could also be defined (somewhat inefficiently) as follows:

(defun flatten (tree)
(if (atom tree)
(mklist tree)
(nconc (flatten (car tree))
(if (cdr tree) (flatten (cdr tree))))))

Finally, consider rfind-if, arecursive version of find-if which workson
treesaswell asflat lists;

5.6 RECURSION ON SUBTREES 73

(defun rfind-if (fn tree)
(if (atom tree)
(and (funcall fn tree) tree)
(or (rfind-if fn (car tree))
(if (cdr tree) (rfind-if fn (cdr tree))))))

To generalize find-if for trees, we have to decide whether we want to search
for just leaves, or for whole subtrees. Our rfind-if takes the former approach,
so the caller can assume that the function given as the first argument will only be
caled on atoms:

> (rfind-if (fint #’numberp #’oddp) ’(2 (3 4) 5))
3

How similar in form are these four functions, copy-tree, count-leaves,
flatten, and rfind-if. Indeed, they're al instances of an archetypal function
for recursion on subtrees. As with recursion on cdrs, we need not leave this
archetypeto float vaguely in the background—we can write afunctionto generate
instances of it.

To get at the archetypeitself, let's look at these functions and see what's not
pattern. Essentialy our-copy-tree istwo facts:

1. Inthe base case it returnsits argument.

2. Inthe recursive case, it applies cons to the recursions down the left (car)
and right (cdr) subtrees.

We should thus be able to expressit asacall to a builder with two arguments:;
(ttrav #’cons #’identity)

A definition of ttrav (“tree traverser”) is shown in Figure 5.8. Instead of
passing one value in the recursive case, we pass two, one for the left subtree and
onefor theright. If thebase argumentisafunctionitwill be called on the current
leaf. Inflat list recursion, the base case is always nil, but in tree recursion the
base case could be an interesting value, and we might want to use it.

With ttrav we could express all the preceding functions except rfind-if.
(They are shownin Figure 5.9.) To definerfind-if we need amore general tree
recursion builder which gives us control over when, and if, the recursive calls are
made. Asthefirst argumentto ttrav we gaveafunctionwhichtook the results of
therecursive calls. For the general case, we want to use instead a function which
takes two closures representing the calls themsel ves. Then we can write recursers
which only traverse as much of the tree as they want to.

74 RETURNING FUNCTIONS

(defun ttrav (rec &optional (base #’identity))
(labels ((self (tree)
(if (atom tree)

(if (functionp base)
(funcall base tree)
base)

(funcall rec (self (car tree))

(if (cdr tree)
(self (cdr tree)))))))
#’self))

Figure 5.8: Function for recursion on trees.

; our-copy-tree
(ttrav #’cons)

; count-leaves
(ttrav #’(lambda (1 r) (+ 1 (or r 1))) 1)

; flatten
(ttrav #’nconc #’mklist)

Figure 5.9: Functions expressed with ttrav.

Functionsbuilt by ttrav awaystraverseawholetree. That'sfinefor functions
like count-leaves or flatten, which have to traverse the whole tree anyway.
But wewant rfind-if to stop searching as soon asit findswhat it's looking for.
It must be built by the more general trec, shown in Figure 5.10. The second arg
to trec should be a function of three arguments. the current object and the two
recursers. The latter two will be closures representing the recursions down the

left and right subtrees. With trec we would define flatten as:

(trec #’(lambda (o 1 r) (nconc (funcall 1) (funcall r)))
#’mklist)

Now we can also expressrfind-if for e.g. oddp as:

(trec #’(lambda (o 1 r) (or (funcall 1) (funcall r)))
#’ (lambda (tree) (and (oddp tree) tree)))

5.7 WHEN TO BUILD FUNCTIONS 75

(defun trec (rec &optional (base #’identity))
(labels
((self (tree)
(if (atom tree)
(if (functionp base)
(funcall base tree)

base)
(funcall rec tree
#’ (lambda ()
(self (car tree)))
#’ (lambda ()

(if (cdr tree)
(self (cdr tree))))))))
#'self))

Figure 5.10: Function for recursion on trees.

5.7 When to Build Functions

Expressing functions by calls to constructors instead of sharp-quoted lambda-
expressions could, unfortunately, entail unnecessary work at runtime. A sharp-
quoted lambda-expressionis aconstant, but acall to aconstructor functionwill be
evaluated at runtime. If we really have to make this call at runtime, it might not
be worth using constructor functions. However, at least some of the time we can
call the constructor beforehand. By using #., the sharp-dot read macro, we can
have the new functions built at read-time. So long as compose and its arguments
are defined when this expression is read, we could say, for example,

(find-if #.(compose #’oddp #’truncate) 1lst)

Then the call to compose would be evaluated by the reader, and the resulting
function inserted as a constant into our code. Since both oddp and truncate are
built-in, it would safe to assume that we can evaluate the compose at read-time,
s0 long as compose itself were aready |oaded.

In general, composing and combining functionsis more easily and efficiently
done with macros. This is particularly true in Common Lisp, with its separate
name-space for functions. After introducing macros, we will in Chapter 15 cover
much of the ground we covered here, but in a more luxurious vehicle.

Functions as Representation

Generally, data structures are used to represent. An array could represent a
geometric transformation; atree could represent ahierarchy of command; agraph
could represent a rail network. In Lisp we can sometimes use closures as a
representation. Within aclosure, variable bindings can storeinformation, and can
also play the role that pointers play in constructing complex data structures. By
making a group of closures which share bindings, or can refer to one another, we
can create hybrid objects which combine the advantages of data structures and
programs.

Beneath the surface, shared bindings are pointers. Closures just bring us the
convenience of dealingwith themat ahigher level of abstraction. By using closures
to represent something we would otherwise represent with static data structures,
we can often expect substantial improvementsin elegance and efficiency.

6.1 Networks

Closures have three useful properties: they are active, they have local state, and
we can make multiple instances of them. Where could we use multiple copies
of active objects with local state? In applications involving networks, among
others. In many caseswe can represent nodesin anetwork as closures. Aswell as
having its own local state, a closure can refer to another closure. Thus a closure
representing a node in a network can know of several other nodes (closures) to
which it must send its output. This means that we may be able to translate some
networks straight into code.

76

6.1 NETWORKS 77

> (run-node ’people)
Is the person a man?
>> yes

Is he living?

>> no

Was he American?

>> yes

Is he on a coin?

>> yes

Is the coin a penny?
>> yes

LINCOLN

Figure 6.1: Session of twenty questions.

In this section and the next we will look at two ways to traverse a network.
First wewill follow the traditional approach, with nodes defined as structures, and
separate code to traverse the network. Then in the next section we'll show how to
build the same program from a single abstraction.

As an example, we will use about the simplest application possible: one of
those programs that play twenty questions. Our network will be a binary tree.
Each non-leaf node will contain a yes/no question, and depending on the answer
to the question, the traversal will continue down the left or right subtree. Leaf
nodeswill contain return values. When the traversal reaches aleaf node, its value
will be returned as the value of the traversal. A session with this program might
look asin Figure 6.1.

The traditional way to begin would be to define some sort of data structure to
represent nodes. A node is going to have to know several things: whether itisa
leaf; if so, which valueto return, and if not, which question to ask; and where to
go depending on the answer. A sufficient data structure is defined in Figure 6.2.
Itisdesigned for minimal size. The contents field will contain either a question
or areturn value. If the nodeis not aleaf, the yes and no fields will tell whereto
go depending on the answer to the question; if the node is aleaf, we will know it
because these fields are empty. The global *nodes* will be ahash-tablein which
nodes are indexed by name. Finally, defnode makes a new node (of either type)
and storesit in *nodes*. Using these materials we could define the first node of
our tree:

(defnode ’people "Is the person a man?"
’male ’female)

78 FUNCTIONS AS REPRESENTATION

(defstruct node contents yes no)
(defvar *nodes* (make-hash-table))

(defun defnode (name conts &optional yes no)
(setf (gethash name *nodesx)
(make-node :contents conts
1yes yes
:no no)))

Figure 6.2: Representation and definition of nodes.

(defnode ’people "Is the person a man?" ’male ’female)
peop p
(defnode ’male "Is he living?" ’liveman ’deadman)
(defnode ’deadman "Was he American?" ’us ’them)
(defnode ’us "Is he on a coin?" ’coin ’cidence)
(defnode ’coin "Is the coin a penny?" ’penny ’coins)
penny penny
(defnode ’penny ’lincoln)
penny

Figure 6.3: Sample network.

Figure 6.3 shows as much of the network as we need to produce the transcript in

Figure6.1.

Now all we need to do is write a function to traverse this network, printing
out the questions and following the indicated path. This function, run-node, is
shown in Figure 6.4. Given a name, we look up the corresponding node. If it is
not a leaf, the contents are asked as a question, and depending on the answer,
we continue traversing at one of two possible destinations. If the node is a leaf,
run-node just returnsits contents. With the network defined in Figure 6.3, this

function produces the output shown in Figure 6.1.

6.2 COMPILING NETWORKS 79

(defun run-node (name)
(let ((n (gethash name *nodesx*)))
(cond ((node-yes n)
(format t "“A~%>> " (node-contents n))
(case (read)
(yes (run-node (node-yes n)))
(t (run-node (node-no n)))))
(t (node-contents n)))))

Figure 6.4: Function for traversing networks.

(defvar *nodes* (make-hash-table))

(defun defnode (name conts &optional yes no)
(setf (gethash name *nodesx)
(if yes
#’ (lambda ()
(format t ""A~Y>> " conts)
(case (read)
(yes (funcall (gethash yes *nodesx*)))
(t (funcall (gethash no *nodes*)))))
#’ (lambda () conts))))

Figure 6.5: A network compiled into closures.

6.2 Compiling Networks

In the preceding section wewrote anetwork program asit might have been written
in any language. Indeed, the program is so simple that it seems odd to think that
we could write it any other way. But we can—in fact, we can write it much more
simply.

The code in Figure 6.5 illustrates this point. It's al we really need to run our
network. Instead of having nodes as data structures and a separate function to
traverse them, we represent the nodes as closures. The dataformerly contained in
the structures gets stored in variable bindings within the closures. Now thereisno
need for run-node; it isimplicit in the nodes themselves. To start the traversal,

80 FUNCTIONS AS REPRESENTATION

(defvar *nodes* nil)

(defun defnode (&rest args)
(push args *nodesx)
args)

(defun compile-net (root)
(let ((node (assoc root *nodesx*)))
(if (null node)
nil
(let ((conts (second node))
(yes (third node))
(no (fourth node)))
(if yes
(let ((yes-fn (compile-net yes))
(no-fn (compile-net no)))
#’ (lambda ()
(format t "“A~%>> " conts)
(funcall (if (eq (read) ’yes)
yes-fn
no-fn))))
#’ (lambda () conts))))))

Figure 6.6: Compilation with static references.

we just funcall the node at which we want to begin:

(funcall (gethash ’people *nodes*))
Is the person a man?
>>

Fromthen on, thetranscript will bejust asit waswith the previousimplementation.

By representing the nodes as closures, we are able to transform our twenty-
questions network entirely into code. Asit is, the code will have to look up the
node functions by name at runtime. However, if we know that the network is
not going to be redefined on the fly, we can add a further enhancement: we can
have node functions call their destinations directly, without having to go through
ahash-table.

Figure 6.6 contains a new version of the program. Now *nodes* is a dis-
posable list instead of a hash-table. All the nodes are defined with defnode as
before, but no closures are generated at this point. After al the nodes have been

6.3 LOOKING FORWARD 81

defined, we call compile-net to compileawhole network at once. Thisfunction
recursively works its way right down to the leaves of the tree, and on the way
back up, returns at each step the node/function for each of the two subtrees.* So
now each node will have adirect handle on its two destinations, instead of having
only their names. When the original call to compile-net returns, it will yield a
function representing the portion of the network we asked to have compiled.

> (setq n (compile-net ’people))
#<Compiled-Function BF3C06>

> (funcall n)

Is the person a man?

>>

Notice that compile-net compiles in both senses. It compiles in the genera
sense, by trandating the abstract representation of the network into code. More-
over, if compile-net itself is compiled, it will return compiled functions. (See
page 25.)

After compiling thenetwork, wewill nolonger needthelist madeby defnode.
It can be cut loose (e.g. by setting *nodes* tonil) and reclaimed by the garbage
collector.

6.3 Looking Forward

Many programsinvolving networks can be implemented by compiling the nodes
into closures. Closures are data objects, and they can be used to represent things
just as structures can. Doing so requires some unconventional thinking, but the
rewards are faster and more elegant programs.

Macros help substantially when we use closures as a representation. “To
represent with closures’ is another way of saying “to compile,” and since macros
do their work at compile-time, they are a natural vehicle for this technique.
After macros have been introduced, Chapters 23 and 24 will present much larger
programs based on the strategy used here.

1This version assumes that the network is a tree, which it must be in this application.

M acr os

Lisp's macro facility allows you to define operators that are implemented by
transformation. The definition of a macro is essentially a function that generates
Lisp code—a program that writes programs. From these small beginnings arise
great possihilities, and also unexpected hazards. Chapters 7-10 form a tutorial
on macros. This chapter explains how macroswork, gives techniquesfor writing
and testing them, and looks at the issue of macro style.

7.1 How Macros Work

Since macros can be called and return values, they tend to be associated with func-
tions. Macro definitions sometimes resembl e function definitions, and speaking
informally, people call do, which is actually a macro, a “built-in function.” But
pushing the analogy too far can be asource of confusion. Macroswork differently
from normal functions, and knowing how and why macros are different is the
key to using them correctly. A function produces results, but a macro produces
expressions—which, when evaluated, produce results.

The best way to begin is to move straight into an example. Suppose we want
to write amacronil!, which sets its argument to nil. Wewant (nil! x) to
have the same effect as (setq x nil). We do it by defining nil! as a macro
which turnsinstances of the first form into instances of the second.

> (defmacro nil! (var)

(list ’setq var nil))
NIL!

82

7.1 HOW MACROS WORK 83

Paraphrasedin English, thisdefinitiontellsLisp: “Whenever you seean expression
of the form (nil! var), turn it into one of the form (setq var nil) before
evaluating it

Theexpression generated by themacrowill beevaluatedin place of theoriginal
macro call. A macro cdl is alist whose first element is the name of a macro.
What happens when we type the macro call (nil! x) into the toplevel? Lisp
noticesthat nil! isthe name of a macro, and

1. builds the expression specified by the definition above, then

2. evaluatesthat expression in place of the original macro call.

The step of building the new expressionis called macroexpansion. Lisp looks
up the definition of nil!, which shows how to construct a replacement for the
macro call. The definition of nil! is applied like a function to the expressions
given as arguments in the macro call. It returns alist of three elements. setq,
the expression given as the argument to the macro, and nil. In this case, the
argumenttonil! isx, and the macroexpansionis (setq x nil).

After macroexpansion comes a second step, evaluation. Lisp evaluates the
macroexpansion (setq x nil) asif you had typed that in thefirst place. Evalu-
ation does not always comeimmediately after expansion, asit does at thetoplevel.
A macro call occurring in the definition of afunction will be expanded when the
function is compiled, but the expansion—or the object code which results from
it—won’t be evaluated until the function is called.

Many of the difficulties you might encounter with macros can be avoided by
maintaining a sharp distinction between macroexpansion and evaluation. When
writing macros, know which computationsare performed during macroexpansion,
and which during evaluation, for the two steps generally operate on objects of
two different sorts. The macroexpansion step deals with expressions, and the
evaluation step deals with their values.

Sometimes macroexpansion can be more complicated than it wasin the case of
nil!. Theexpansionof nil! wasacall to abuilt-in special form, but sometimes
the expansion of amacro will beyet another macro call, like a Russian doll which
contains another doll inside it. In such cases, macroexpansion simply continues
until it arrives at an expression which is no longer amacro call. The process can
take arbitrarily many steps, so long as it terminates eventually.

Many languages offer some form of macro, but Lisp macros are singularly
powerful. When afileof Lispiscompiled, aparser readsthe sourcecodeand sends
its output to the compiler. Here's the stroke of genius: the output of the parser
consists of lists of Lisp objects. With macros, we can manipulate the program
while it's in this intermediate form between parser and compiler. If necessary,
these manipulations can be very extensive. A macro generating its expansion has

84 MACROS

at itsdispositionthefull power of Lisp. Indeed, amacroisreally aLisp function—
onewhich happensto return expressions. Thedefinitionof nil! containsasingle
call to 1ist, but another macro might invoke a whole subprogram to generate its
expansion.

Being ableto changewhat the compiler seesisamost likebeing ableto rewrite
it. We can add any construct to the language that we can define by transformation
into existing constructs.

7.2 Backquote

Backquote is a special version of quote which can be used to create templates
for Lisp expressions. One of the most common uses of backquote is in macro
definitions.

The backquote character, ¢, isso named because it resembles aregular quote,
?, reversed. When backquote aloneis affixed to an expression, it behavesjust like
quote:

‘(a b c)isequalto ’(a b c)

Backquote becomes useful only when it appearsin combination with comma,
,, and commearat, ,@. If backquote makes atemplate, comma makes aslot within
atemplate. A backquoted list is equivalent to a call to 1ist with the elements
quoted. That is,

‘(a b c) isequalto (list ’a ’b ’c).
Within the scope of a backquote, a comma tells Lisp: “turn off the quoting.”

When a comma appears before one of the elements of theligt, it has the effect of
cancelling out the quote that would have been put there. So

‘(a ,b c ,d) isequalto (list ’a b ’c d).

Instead of the symbol b, its valueisinserted into the resulting list. Commas work
no matter how deeply they appear within a nested list,

> (setqalb?2c 3)

3
> ‘(a ,b c)
(A 20)

> “(a (,b <))
(A (20

7.2 BACKQUOTE 85

and they may even appear within quotes, or within quoted sublists:

> ‘(ab,c C,(+abc)) (+ab)’c’((a,hb)))
(AB3 (°6) (+ AB) 'C (1 2)))

One comma counteracts the effect of one backquote, so commas must match
backquotes. Say that acommaissurrounded by aparticular operator if the operator
is prepended to the comma, or prepended to an expression which containsit. In
‘(,a ,(“,c))), for example, the last comma is surrounded by one comma
and two backquotes. Thegenera ruleis: acommasurrounded by n commas must
be surrounded by at least n+1 backquotes. An obvious corollary is that commas
may not appear outside of a backquoted expression. Backquotes and commas can
be nested, so long as they obey the rule above. Any of the following expressions
would generate an error if typed into the toplevel:

,X ‘(a ,,b c) ‘(a ,(b ,c) d) “(,,‘a)

Nested backquotes are only likely to be needed in macro-defining macros. Both
topics are discussed in Chapter 16.

Backquoteis usually used for making lists.* Any list generated by backquote
can aso be generated by using 1ist and regular quotes. The advantage of
backquote is just that it makes expressions easier to read, because a backquoted
expression resembles the expression it will produce. In the previous section we
definednil! as

(defmacro nil! (var)
(1ist ’setq var nil))

With backquote the same macro can be defined as:

(defmacro nil! (var)
‘(setq ,var nil))

which in this case is not al that different. The longer the macro definition,
however, the more important it is to use backquote. Figure 7.1 contains two
possible definitions of nif, amacro which does a three-way numeric if.?2

The first argument should evaluate to a number. Then the second, third, or
fourth argument is evaluated, depending on whether the first was positive, zero,
or negative:

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))
>(0 2.5 -8))
(Z P N)

86 MACROS

With backquote:

(defmacro nif (expr pos zero neg)
‘(case (truncate (signum ,expr))
(1 ,pos)
(0 ,zero)
(-1 ,neg)))

Without backquote:

(defmacro nif (expr pos zero neg)
(list ’case
(list ’truncate (list ’signum expr))
(1ist 1 pos)
(l1ist 0 zero)
(list -1 neg)))

Figure 7.1: A macro defined with and without backquote.

The two definitions in Figure 7.1 define the same macro, but the first uses
backquote, while the second buildsits expansion by explicit callsto 1ist. From
thefirst definitionit'seasy toseethat (nif x ’p ’z ’n), for example, expands
into

(case (truncate (signum x))

(1 ’p)
(0 ’z)
(-1 ’n))

because the body of the macro definition looksjust like the expansionit generates.
To understand the second version, without backquote, you have to trace in your
head the building of the expansion.

Comma-at, ,@, is a variant of comma. It behaves like comma, with one
difference: instead of merely inserting the value of the expression to which it
is affixed, as comma does, comma-at splices it. Splicing can be thought of as
inserting while removing the outermost level of parentheses:

> (setqg b °(1 2 3))
(123)

1Backquote can also be used to create vectors, but thisisrarely done in macro definitions.
2This macro is defined a little oddly to avoid using gensyms. A better definition is given on
page 150.

7.2 BACKQUOTE 87

> “(a ,b c)
(A (1 23) 0
> ‘(a ,@b c)
(A1 230

Thecommacausesthelist (1 2 3) tobeinsertedin place of b, whilethe comma-
at causes the elements of the list to be inserted there. There are some additional
restrictions on the use of comma-at:

1. In order for its argument to be spliced, comma-at must occur within a
sequence. It’'san error to say something like ¢ , @b because thereis nowhere
to splice the value of b.

2. The object to be spliced must be alist, unlessit occurslast. The expression
“(a ,01) will evaluateto (a . 1), but attempting to splice an atominto
themiddle of alist, asin ‘ (a ,@1 b), will cause an error.

Comma-at tends to be used in macros which take an indeterminate number of
arguments and pass them on to functions or macros which also take an indetermi-
nate number of arguments. This situation commonly arises when implementing
implicit blocks. Common Lisp hasseveral operatorsfor grouping codeinto blocks,
including block, tagbody, and progn. These operatorsrarely appear directly in
source code; they are more often implicit—that is, hidden by macros.

An implicit block occurs in any built-in macro which can have a body of
expressions. Both let and cond provide implicit progn, for example. The
simplest built-in macro to do so is probably when:

(when (eligible obj)
(do-this)
(do-that)
obj)

If (eligible obj) returnstrue, theremainingexpressionswill beevaluated, and
thewhen expression as awholewill return the value of thelast. As an example of
the use of comma-at, here is one possible definition for when:

(defmacro our-when (test &body body)
‘(if ,test
(progn
,@body)))

This definition uses an &body parameter (identical to &rest except for its effect
on pretty-printing) to take in an arbitrary number of arguments, and a comma-at
to splice them into a progn expression. In the macroexpansion of the call above,
the three expressionsin the body will appear within asingle progn:

88 MACROS

(if (eligible obj)
(progn (do-this)
(do-that)
obj))

Most macros for iteration splice their argumentsin asimilar way.

The effect of commarat can be achieved without using backquote. The ex-
pression ‘ (a ,@b c) isequa to (cons ’a (append b (list ’c))),for ex-
ample. Comma-at exists only to make such expression-generating expressions
more readable.

Macro definitions (usually) generate lists. Although macro expansions could
be built with the function 1ist, backquote list-templates make the task much
easier. A macro defined with defmacro and backquotewill superficially resemble
a function defined with defun. So long as you are not misled by the similarity,
backquote makes macro definitions both easier to write and easier to read.

Backquote is so often used in macro definitions that people sometimes think
of backquoteas part of defmacro. Thelast thing to remember about backquoteis
that it hasalife of itsown, separatefromitsrolein macros. You can use backquote
anywhere sequences need to be built:

(defun greet (name)
‘(hello ,name))

7.3 Defining Simple Macros

In programming, the best way to learn is often to begin experimenting as soon
as possible. A full theoretical understanding can come later. Accordingly, this
section presents a way to start writing macros immediately. It works only for a
narrow range of cases, but where applicableit can be applied quite mechanically.
(If you've written macros before, you may want to skip this section.)

Asan example, we consider how to write avariant of the the built-in Common
Lisp function member. By default member uses eql to test for equality. If you
want to test for membership using eq, you have to say so explicitly:

(member x choices :test #’eq)

If wedidthisalot, we might want to write avariant of member which always used
eq. Some earlier diaects of Lisp had such afunction, called memq:

(memq x choices)

Ordinarily onewould definememq asaninlinefunction, but for the sake of example
we will reincarnate it as a macro.

7.3 DEFINING SIMPLE MACROS 89

call: (memq x choices)

expansion: (member x choices :test #’eq)

Figure 7.2: Diagram used in writing memq.

The method: Begin with atypical call to the macro you want to define. Write
it down on a piece of paper, and below it write down the expression into which it
ought to expand. Figure 7.2 shows two such expressions. From the macro call,
construct the parameter list for your macro, making up some parameter name for
each of the arguments. In this case there are two arguments, so we'll have two
parameters, and call them obj and 1st:

(defmacro memqg (obj 1lst)

Now go back to the two expressions you wrote down. For each argument in the
macro call, draw a line connecting it with the place it appears in the expansion
below. In Figure 7.2 there are two paralel lines. To write the body of the macro,
turn your attention to the expansion. Start the body with a backquote. Now, begin
reading the expansion expression by expression. Wherever you find a parenthesis
that isn't part of an argument in the macro call, put one in the macro definition.
So following the backquote will be a left parenthesis. For each expressionin the
expansion

1. If there is no line connecting it with the macro call, then write down the
expression itself.

2. If there is a connection to one of the arguments in the macro call, write
down the symbol which occurs in the corresponding position in the macro
parameter list, preceded by a comma.

Thereis no connection to the first element, member, SO we use member itself:

(defmacro memq (obj 1lst)
¢ (member

However, x hasalineleading to thefirst argument in the source expression, so we
use in the macro body the first parameter, with a comma:

(defmacro memqg (obj 1lst)
¢ (member ,obj

Continuing in this way, the completed macro definition is:

90 MACROS

(while hungry
(stare-intently)
(meow)
(rub-against-legs))

(do O
((not hungry))
(stare-intently)
(meow)
(rub-against-legs))

Figure 7.3: Diagram used in writing while.

(defmacro memq (obj 1st)
‘ (member ,obj ,lst :test #’eq))

So far, we can only write macros which take a fixed number of arguments.
Now suppose we want to write a macro while, which will take a test expression
and some body of code, and loop through the code as long as the test expression
returns true. Figure 7.3 contains an example of a while loop describing the
behavior of acat.

To write such a macro, we have to modify our technique slightly. As before,
begin by writing down a sample macro call. From that, build the parameter list
of the macro, but where you want to take an indefinite number of arguments,
conclude with an &rest or &body parameter:

(defmacro while (test &body body)

Now write the desired expansion below the macro call, and as before draw lines
connecting the arguments in the macro call to their position in the expansion.
However, when you have a sequence of arguments which are going to be sucked
into asingle &rest or &body parameter, treat them as a group, drawing asingle
line for the whole sequence. Figure 7.3 shows the resulting diagram.

To write the body of the macro definition, proceed as before along the expan-
sion. Aswell asthe two previous rules, we need one more:

3. If there is a connection from a series of expressions in the expansion to a
series of the arguments in the macro call, write down the corresponding
&rest or &body parameter, preceded by acomma-at.

So the resulting macro definition will be:

7.4 TESTING MACROEXPANSION 91

(defmacro while (test &body body)
“(do O
((not ,test))
,@body))

To build a macro which can have a body of expressions, some parameter has to
act asafunnel. Here multiple argumentsin the macro call arejoined together into
body, and then broken up again when body is spliced into the expansion.

The approach described in this section enables us to write the simplest
macros—those which merely shuffle their parameters. Macros can do a lot
more than that. Section 7.7 will present examples where expansions can’'t be
represented as simple backquoted lists, and to generate them, macros become
programsin their own right.

7.4 Testing Macroexpansion

Having written a macro, how do wetest it? A macro like memq is simple enough
that one can tell just by looking at it what it will do. When writing more compli-
cated macros, we have to be able to check that they are being expanded correctly.

Figure 7.4 shows a macro definition and two ways of looking at its expansion.
The built-in function macroexpand takes an expression and returns its macroex-
pansion. Sending a macro call to macroexpand shows how the macro call will
finaly be expanded before being evaluated, but a complete expansion is not al-
ways what you want in order to test a macro. When the macro in question relies
on other macros, they too will be expanded, so a complete macroexpansion can
sometimes be difficult to read.

From the first expression shown in Figure 7.4, it's hard to tell whether or not
while isexpanding as intended, because the built-in do macro gets expanded, as
well as the prog macro into which it expands. What we need is away of seeing
the result after only one step of expansion. This is the purpose of the built-in
function macroexpand-1, shown in the second example; macroexpand-1 stops
after just one step, even if the expansion is still amacro call.

When we want to look at the expansion of a macro call, it will be a nuisance
aways to have to type

(pprint (macroexpand-1 ’(or x y)))
Figure 7.5 defines a new macro which allows us to say instead:
(mac (or x y))

Typically you debug functions by calling them, and macros by expanding
them. But since a macro call involves two layers of computation, there are two

92 MACROS

> (defmacro while (test &body body)
“(do O
((not ,test))
,@body))
WHILE

> (pprint (macroexpand ’(while (able) (laugh))))

(BLOCK NIL
(LET NIL
(TAGBODY
#:G61
(IF (NOT (ABLE)) (RETURN NIL))
(LAUGH)
(GO #:G61))))
T
> (pprint (macroexpand-1 ’(while (able) (laugh))))

(DO NIL
((NOT (ABLE)))
(LAUGH))
T

Figure 7.4: A macro and two depths of expansion.

(defmacro mac (expr)
‘(pprint (macroexpand-1 ’,expr)))

Figure 7.5: A macro for testing macroexpansion.

points where things can go wrong. If a macro is misbehaving, most of the time
youwill beableto tell what’swrong just by looking at the expansion. Sometimes,
though, the expansion will look fine and you'll want to evaluate it to see where
the problems arise. If the expansion contains free variables, you may want to set
some variablesfirst. In some systems, you will be able to copy the expansion and
paste it into the toplevel, or select it and choose eval from a menu. Inthe worst
caseyou can set avariabletothelist returned by macroexpand-1, then call eval
onit:

75 DESTRUCTURING IN PARAMETER LISTS 93

> (setq exp (macroexpand-1 ’(memq ’a ’(a b ¢))))
(MEMBER (QUOTE A) (QUOTE (A B C)) :TEST (FUNCTION EQ))
> (eval exp)

(A B Q)

Finally, macroexpansion is more than an aid in debugging, it's also a way of
learning how to write macros. Common Lisp has over a hundred macros built-in,
some of them quite complex. By looking at the expansions of these macros you
will often be able to see how they were written.

7.5 Destructuring in Parameter Lists

Destructuring is ageneralization of the sort of assignment® done by function calls.
If you define afunction of several arguments

(defun foo (x y 2z)
+xy2)

then when the functionis called
(foo 1 2 3)

the parametersof the function are assigned argumentsin the call accordingto their
position: x to 1, y to 2, and z to 3. Destructuring describes the situation where
this sort of positional assignment is done for arbitrary list structures, as well as
flat listslike (x y z).

The Common Lisp destructuring-bind macro (new in CLTL2) takes a
pattern, an argument evaluating to alist, and abody of expressions, and evaluates
the expressions with the parameters in the pattern bound to the corresponding
elements of thelist:

> (destructuring-bind (x (y) . z) ’(a (b) c d)
(list x y 2z))
(A B (C D))

This new operator and otherslike it form the subject of Chapter 18.

Destructuring is also possible in macro parameter lists. The Common Lisp
defmacro allows parameter lists to be arbitrary list structures. When a macro
cal is expanded, components of the call will be assigned to the parameters as if
by destructuring-bind. The built-in dolist macro takes advantage of such
parameter list destructuring. Inacal like:

3Destructuring is usually seen in operators which create bindings, rather than do assignments.
However, conceptually destructuring is a way of assigning values, and would work just as well for
existing variables as for new ones. That is, there is nothing to stop you from writing a destructuring
setq.

94 MACROS

(dolist (x ’(a b c))
(print x))

the expansion function must pluck x and ’> (a b ¢) from within the list given as
the first argument. That can be done implicitly by giving dolist the appropriate
parameter list:*

(defmacro our-dolist ((var list &optional result) &body body)
¢ (progn
(mapc #’(lambda (,var) ,@body)
,1list)
(let ((,var nil))
,result)))

In Common Lisp, macroslike dolist usually enclose within alist the arguments
not part of the body. Because it takes an optional result argument, dolist
must enclose its first arguments in a distinct list anyway. But even if the extra
list structure were not necessary, it would make calls to dolist easier to read.
Suppose we want to define a macro when-bind, like when except that it binds
some variable to the value returned by the test expression. This macro may be
best implemented with a nested parameter list;

(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))
(when ,var
,@body)))

and called asfollows:

(when-bind (input (get-user-input))
(process input))

instead of:

(let ((input (get-user-input)))
(when input
(process input)))

Used sparingly, parameter list destructuring can result in clearer code. At a
minimum, it can be used in macroslike when-bind and dolist, which take two
or more arguments followed by a body of expressions.

4This version is written in this strange way to avoid using gensyms, which are not introduced till
later.

7.6 A MODEL OF MACROS 95

(defmacro our-expander (name) ‘(get ,name ’expander))
p g p

(defmacro our-defmacro (name parms &body body)
(let ((g (gensym)))
¢ (progn
(setf (our-expander °’,name)
#’ (lambda (,g)
(block ,name
(destructuring-bind ,parms (cdr ,g)
,@body))))
> ,name)))

(defun our-macroexpand-1 (expr)
(if (and (consp expr) (our-expander (car expr)))
(funcall (our-expander (car expr)) expr)
expr))

Figure 7.6: A sketch of defmacro.

7.6 A Model of Macros

A formal description of what macrosdowould belong and confusing. Experienced
programmers do not carry such a description in their heads anyway. It's more
convenient to remember what defmacro does by imagining how it would be
defined

There is a long tradition of such explanations in Lisp. The Lisp 1.5 Pro-
grammer’s Manual, first published in 1962, gives for reference a definition of
eval writtenin Lisp. Since defmacro isitself a macro, we can give it the same
treatment, asin Figure 7.6. This definition uses several techniques which haven’t
been covered yet, so some readers may want to refer to it later.

The definitionin Figure 7.6 gives afairly accurate impression of what macros
do, but like any sketch it isincomplete. It wouldn’t handle the &whole keyword
properly. And what defmacro realy stores as the macro-function of its first
argument is a function of two arguments: the macro call, and the lexical envi-
ronment in which it occurs. However, these features are used only by the most
esoteric macros. |f you worked on the assumption that macros were implemented
as in Figure 7.6, you would hardly ever go wrong. Every macro defined in this
book would work, for example.

The definition in Figure 7.6 yields an expansion function which is a sharp-
quoted lambda-expression. That should makeit aclosure: any free symbolsinthe

[¢]

96 MACROS

macro definition should refer to variablesin the environment wherethe defmacro
occurred. So it should be possible to say this:

(let ((op ’setq))
(defmacro our-setq (var val)
(1ist op var val)))

Asof CLTL2, itis. Butin cLTL1, macro expanderswere defined in the null lexical
environment,® so in some old implementations this definition of our-setq will
not work.

7.7 Macrosas Programs

A macro definition need not bejust abackquotedlist. A macroisafunctionwhich
transforms one sort of expression into another. This function can call 1ist to
generate its result, but can just as well invoke a whole subprogram consisting of
hundreds of lines of code.

Section 7.3 gave an easy way of writing macros. Using this technique we can
write macros whose expansions contain the same subexpressions as appear in the
macro call. Unfortunately, only the simplest macros meet this condition. Asa
more complicated example, consider the built-in macro do. It isn't possible to
write do as a macro which simply shuffles its parameters. The expansion has to
build complex expressions which never appear in the macro call.

The more general approach to writing macros is to think about the sort of
expression you want to be able to use, what you want it to expand into, and then
writethe programthat will transformthefirst forminto the second. Try expanding
an exampleby hand, then look at what happenswhen oneformistransformedinto
another. By working from examplesyou can get an idea of what will be required
of your proposed macro.

Figure 7.7 shows an instance of do, and the expression into which it should
expand. Doing expansions by hand is a good way to clarify your ideas about how
amacro should work. For example, it may not be obvious until one tries writing
the expansion that the local variableswill have to be updated using psetq.

The built-in macro psetq (named for “parallel setq”) behaves like setq,
except that al its (even-numbered) argumentswill be evaluated before any of the
assignments are made. If an ordinary setq has more than two arguments, then
the new value of the first argument is visible during the evaluation of the fourth:

5For an example of macro where this distinction matters, see the note on page 393.

7.7 MACROS AS PROGRAMS 97

(do ((w 3)
(x 1 (1+ x))
(y 2 (1+ y))
(z))
((> x 10) (princ z) y)
(princ x)
(princ y))

should expand into something like

(prog ((w 3) (x 1) (y 2) (z nil))
foo
(if ¢ x 10)
(return (progn (princ z) y)))
(princ x)
(princ y)
(psetq x (1+ x) y (1+ y))
(go fo0))

Figure 7.7: Desired expansion of do.

> (let ((a 1))
(setq a 2 b a)
(1ist a b))

(2 2)

Here, because a isset first, b getsitsnew value, 2. A psetq issupposed to behave
asif its arguments were assigned in parallel:

> (let ((a 1))
(psetq a 2 b a)
(1ist a b))

2

So here b gets the old value of a. The psetq macro is provided especialy to
support macroslike do, which need to eval uate some of their argumentsin parallel.
(Had we used setq, we would have been defining do* instead.)

On looking at the expansion, it is also clear that we can't really use foo as
the loop label. What if foo is also used as a loop label within the body of the
do? Chapter 9 will deal with this problem in detail; for now, sufficeit to say that
instead of using f oo, the macroexpansion must use a special anonymous symbol
returned by the function gensym.

98 MACROS

(defmacro our-do (bindforms (test &rest result) &body body)
(let ((label (gensym)))

‘(prog , (make-initforms bindforms)
,label
(if ,test

(return (progn ,Q@result)))

,@body
(psetq ,@(make-stepforms bindforms))
(go ,label))))

(defun make-initforms (bindforms)
(mapcar #’(lambda (b)
(if (consp b)
(1ist (car b) (cadr b))
(list b nil)))
bindforms))

(defun make-stepforms (bindforms)
(mapcan #’(lambda (b)
(if (and (comnsp b) (third b))
(1ist (car b) (third b))
nil))
bindforms))

Figure 7.8: Implementing do.

In order to write do, we consider what it would take to transform the first
expression in Figure 7.7 into the second. To perform such a transformation,
we need to do more than get the macro parameters into the right positions in
some backquoted list. The initial prog has to be followed by alist of symbols
and their initial bindings, which must be extracted from the second argument
passed to the do. The function make-initforms in Figure 7.8 will return such
alist. We also have to build a list of arguments for the psetq, but this case is
more complicated because not al the symbols should be updated. In Figure 7.8,
make-stepforms returns arguments for the psetq. With these two functions,
therest of the definition becomesfairly straightforward.

The code in Figure 7.8 isn't exactly the way do would be written in a
real implementation. To emphasize the computation done during expansion,
make-initforms and make-stepforms have been broken out as separate func-
tions. Inthefuture, such codewill usually beleft withinthe defmacro expression.

7.8 MACRO STYLE 99

With the definition of this macro, we begin to see what macros can do. A
macro has full access to Lisp to build an expansion. The code used to generate
the expansion may be a programin its own right.

7.8 Macro Style

Good style means something different for macros. Style matters when code is
either read by people or evaluated by Lisp. With macros, both of these activities
take place under slightly unusual circumstances.

There are two different kinds of code associated with a macro definition: ex-
pander code, the code used by the macro to generate its expansion, and expansion
code, which appearsin the expansion itself. The principles of style are different
for each. For programsin general, to have good style is to be clear and efficient.
These principles are bent in opposite directions by the two types of macro code:
expander code can favor clarity over efficiency, and expansion code can favor
efficiency over clarity.

It's in compiled code that efficiency counts most, and in compiled code the
macro calls have already been expanded. If the expander code was efficient, it
made compilation go slightly faster, but it won’t make any differencein how well
the program runs. Since the expansion of macro callstendsto be only asmall part
of the work done by a compiler, macros which expand efficiently can’t usually
make much of a difference even in the compilation speed. So most of the time
you can safely write expander code the way you would write a quick, first version
of a program. If the expander code does unnecessary work or conses a lot, so
what? Your time is better spent improving other parts of the program. Certainly
if there's a choice between clarity and speed in expander code, clarity should
prevail. Macro definitions are generally harder to read than function definitions,
because they contain amix of expressions evaluated at two different times. If this
confusion can be reduced at the expense of efficiency in the expander code, it'sa
bargain.

For example, suppose that we wanted to define a version of and as a macro.
Since (and a b c¢) isequivalentto (if a (if b c)), we can write and in
terms of if asin thefirst definition in Figure 7.9. According to the standards by
which we judge ordinary code, our-and is badly written. The expander code is
recursive, and on each recursion finds the length of successive cdrs of the same
list. If this code were going to be evaluated at runtime, it would be better to define
this macro as in our-andb, which generates the same expansion with no wasted
effort. However, as a macro definition our-and isjust as good, if not better. It
may beinefficientin calling Length on each recursion, but its organization shows
more clearly the way in which the expansi on depends on the number of conjuncts.

100 MACROS

(defmacro our-and (&rest args)
(case (length args)
(0 t)
(1 (car args))
(t “(if ,(car args)
(our-and ,@(cdr args))))))

(defmacro our-andb (&rest args)
(if (null args)
t
(labels ((expander (rest)
(if (cdr rest)
“(if ,(car rest)
, (expander (cdr rest)))
(car rest))))
(expander args))))

Figure 7.9: Two macros equivalent to and.

As always, there are exceptions. In Lisp, the distinction between compile-
timeand runtimeisan artificial one, so any rule which dependsuponitislikewise
artificial. In someprograms, compile-timeisruntime. If you'rewriting aprogram
whose main purpose is transformation and which uses macros to do it, then
everything changes: the expander code becomesyour program, and the expansion
its output. Of course under such circumstances expander code should be written
with efficiency inmind. However, it's safeto say that most expander code (@) only
affects the speed of compilation, and (b) doesn’t affect it very much—meaning
that clarity should nearly always comefirst.

With expansion code, it's just the opposite. Clarity matters less for macro
expansions because they are rarely looked at, especially by other people. The
forbidden goto is not entirely forbidden in expansions, and the disparaged setq
not quite so disparaged.

Proponents of structured programming disliked goto for what it did to source
code. It was not machine language jump instructions that they considered
harmful—so long as they were hidden by more abstract constructs in source
code. Gotos are condemned in Lisp precisely because it's so easy to hide them:
you can use do instead, and if you didn’t have do, you could write it. Of course,
if we're going to build new abstractions on top of goto, the goto is going to have
to exist somewhere. Thusit isnot necessarily bad styleto use go in the definition
of anew macro, if it can’t be written in terms of some existing macro.

79 DEPENDENCE ON MACROS 101

Similarly, setq isfrowned upon becauseit makesit hard to see whereagiven
variable gets its value. However, a macroexpansion is not going to be read by
many people, so there is usualy little harm in using setq on variables created
within the macroexpansion. If you look at expansions of some of the built-in
macros, you'll see quite alot of setgs.

Several circumstances can make clarity moreimportant in expansion code. If
you'rewriting a complicated macro, you may end up reading the expansions after
all, at least while you're debugging it. Also, in smple macros, only a backquote
separates expander code from expansion code, so if such macros generate ugly
expansions, the ugliness will be al too visible in your source code. However,
even when the clarity of expansion code becomes an issue, efficiency should still
predominate. Efficiency isimportant in most runtime code. Two things make it
especially so for macro expansions: their ubiquity and their invisibility.

Macros are often used to implement general -purpose utilities, which are then
called everywhere in a program. Something used so often can’t afford to be
inefficient. What looks like a harmless little macro could, after the expansion
of all the calls to it, amount to a significant proportion of your program. Such a
macro should receive more attention than its length would seem to demand. Avoid
consing especially. A utility which conses unnecessarily can ruin the performance
of an otherwise efficient program.

The other reason to look to the efficiency of expansion codeisitsvery invis-
ibility. If afunction is badly implemented, it will proclaim this fact to you every
time you look at its definition. Not so with macros. From a macro definition,
inefficiency in the expansion code may not be evident, whichisall themorereason
to go looking for it.

7.9 Dependence on Macros

If you redefine a function, other functions which call it will automatically get the
new version.® The same doesn’'t always hold for macros. A macro call which
occurs in a function definition gets replaced by its expansion when the function
is compiled. What if we redefine the macro after the calling function has been
compiled? Since no trace of the original macro call remains, the expansion within
thefunction can’t be updated. The behavior of thefunctionwill continueto reflect
the old macro definition:

> (defmacro mac (x) ‘(1+ ,x))
MAC

8Except functions compiled inline, which impose the same restrictions on redefinition as macros.

102 MACROS

> (setq fn (compile nil ’(lambda (y) (mac y))))
#<Compiled-Function BF7E7E>

> (defmacro mac (x) ‘(+ ,x 100))

MAC

> (funcall fn 1)

2

Similar problems occur if code which calls some macro is compiled before
the macro itself is defined. CLTL2 says that “a macro definition must be seen
by the compiler before the first use of the macro.” Implementations vary in how
they respond to violations of this rule. Fortunately it's easy to avoid both types
of problem. If you adhere to the following two principles, you need never worry
about stale or nonexistent macro definitions:

1. Define macros before functions (or macros) which call them.

2. When a macro is redefined, aso recompile all the functions (or macros)
which call it—directly or via other macros.

It has been suggested that all the macrosin a program be put in a separatefile,
to makeit easier to ensure that macro definitions are compiled first. That'staking
things too far. It would be reasonable to put general-purpose macros like while
into a separate file, but general-purpose utilities ought to be separated from the
rest of a program anyway, whether they’re functions or macros.

Some macros are written just for use in one specific part of a program, and
these should be defined with the code which uses them. So long as the definition
of each macro appears before any calls to it, your programs will compile fine.
Collecting together al your macros, simply because they’re macros, would do
nothing but make your code harder to read.

7.10 Macrosfrom Functions

This section describes how to transform functions into macros. The first step in
transglating a function into a macro is to ask yourself if you really need to do it.
Couldn’'t you just as well declare the function inline (p. 26)?

There are some legitimate reasons to consider how to tranglate functions into
macros, though. When you begin writing macros, it sometimes helps to think
asif you were writing a function—an approach that usually yields macros which
aren't quite right, but which at least give you something to work from. Another
reason to look at the relationship between macros and functionsisto see how they
differ. Finaly, Lisp programmers sometimes actually want to convert functions
into macros.

7.10 MACROS FROM FUNCTIONS 103

The difficulty of translating a function into a macro depends on a number of
properties of the function. The easiest class to trandate are the functions which

1. Have abody consisting of a single expression.
. Have aparameter list consisting only of parameter names.

. Create no new variables (except the parameters).

2

3

4. Arenot recursive (nor part of amutually recursive group).

5. Have no parameter which occurs more than once in the body.
6

. Have no parameter whose value is used before that of another parameter
occurring before it in the parameter list.

7. Contain no free variables.

One function which meets these criteria is the built-in Common Lisp function
second, which returns the second element of alist. It could be defined:

(defun second (x) (cadr x))

Where a function definition meets all the conditions above, you can easily trans-
formit into an equivalent macro definition. Simply put abackquotein front of the
body and a commain front of each symbol which occursin the parameter list:

(defmacro second (x) ‘(cadr ,x))

Of course, the macro can’t be called under al the same conditions. It can’t be
given as the first argument to apply or funcall, and it should not be called in
environments where the functions it calls have new local bindings. For ordinary
in-line calls, though, the macro second should do the same thing as the function
second.

The technique changes slightly when the body has more than one expression,
because a macro must expand into asingle expression. So if condition 1 doesn’t
hold, you haveto add a progn. Thefunctionnoisy-second:

(defun noisy-second (x)
(princ "Someone is taking a cadr!")
(cadr x))

could be duplicated by the following macro:

(defmacro noisy-second (x)
¢ (progn
(princ "Someone is taking a cadr!")
(cadr ,x)))

104 MACROS

When thefunction doesn’t meet condition 2 becauseit hasan &rest or &body
parameter, the rules are the same, except that the parameter, instead of simply
having a commabeforeit, must be spliced into acall to 1ist. Thus

(defun sum (&rest args)
(apply #’+ args))

becomes

(defmacro sum (&rest args)
‘(apply #’+ (list ,@args)))

which in this case would be better rewritten:

(defmacro sum (&rest args)
“(+ ,Qargs))

When condition 3 doesn’t hold—when new variables are created within the
function body—the rule about the insertion of commas must be modified. Instead
of putting commas before all symbols in the parameter list, we only put them
before those which will refer to the parameters. For example, in:

(defun foo (x y z)
(list x (let ((x y))
(1ist x 2))))

neither of the last two instances of x will refer to the parameter x. The second
instance is not evaluated at all, and the third instance refers to a new variable
established by the 1et. So only thefirst instance will get a comma:

(defmacro foo (x y z)
“(list ,x (let ((x ,y))
(list x ,2))))

Functions can sometimes be transformed into macros when conditions 4, 5 and
6 don't hold. However, these topics are treated separately in later chapters. The
issueof recursionin macrosis coveredin Section 10.4, and the dangersof multiple
and misordered evaluation in Sections 10.1 and 10.2, respectively.

As for condition 7, it is possible to simulate closures with macros, using a
technique similar to the error described on page 37. But seeing as thisis a low
hack, not consonant with the genteel tone of this book, we shall not go into details.

7.11 SYMBOL MACROS 105

7.11 Symbol Macros

CLTL2 introduced a new kind of macro into Common Lisp, the symbol-macro.
While anormal macro call lookslike afunction call, asymbol-macro“call” looks
like a symbol.

Symbol-macros can only be locally defined. The symbol-macrolet special
form can, within its body, cause alone symbol to behave like an expression:

> (symbol-macrolet ((hi (progn (print "Howdy")
iDD))
(+ hi 2))
"Howdy"
3

The body of the symbol-macrolet will be evaluated asif every hi in argument
position had been replaced with (progn (print "Howdy") 1).

Conceptually, symbol-macros are like macros that don’t take any arguments.
With no arguments, macrosbecomesimply textual abbreviations. Thisisnot to say
that symbol-macrosare useless, however. They are used in Chapter 15 (page 205)
and Chapter 18 (page 237), and in the latter instance they are indispensable.

When to Use M acros

How do we know whether agiven function should really be afunction, rather than
amacro? Most of the time there is a clear distinction between the cases which
call for macros and those which don’t. By default we should use functions: it is
inelegant to use a macro where a function would do. We should use macros only
where they bring us some specific advantage.

When do macrosbring advantages? That isthe subject of thischapter. Usually
the question is not one of advantage, but necessity. Most of the things we do with
macros, we could not do with functions. Section 8.1 lists the kinds of operators
which can only be implemented as macros. However, there is also a small (but
interesting) class of borderline cases, in which an operator might justifiably be
written as a function or a macro. For these situations, Section 8.2 gives the
arguments for and against macros. Finally, having considered what macros are
capable of doing, weturnin Section 8.3to arelated question; what kinds of things
do people do with them?

8.1 When Nothing Else Will Do

It's a general principle of good design that if you find similar code appearing at
several pointsin a program, you should write a subroutine and replace the similar
sequences of code with calls to the subroutine. When we apply this principle to
Lisp programs, we have to decide whether the “ subroutine” should be a function
or amacro.

In some cases it's easy to decide to write a macro instead of a function,
because only amacro can do what'sneeded. A function like 1+ could conceivably

106

8.1 WHEN NOTHING ELSE WILL DO 107

be written as either a function or a macro:

(defun 1+ (x) (+ 1 x))

(defmacro 1+ (x) ‘(+ 1 ,x))
But while, from Section 7.3, could only be defined as a macro:

(defmacro while (test &body body)
“(do O
((not ,test))
,@body))

There is no way to duplicate the behavior of this macro with a function. The
definition of while splices the expressions passed as body into the body of a
do, where they will be evaluated only if the test expression returnsnil. No
function could do that; in a function call, all the arguments are evaluated before
the function is even invoked.

When you do need a macro, what do you need from it? Macros can do two
things that functions can't: they can control (or prevent) the evaluation of their
arguments, and they are expanded right into the calling context. Any application
which requires macros requires, in the end, one or both of these properties.

The informal explanation that “macros don’t evaluate their arguments’ is
slightly wrong. It would be more preciseto say that macros control the evaluation
of the argumentsin the macro call. Depending on where the argument is placed
in the macro’s expansion, it could be evaluated once, many times, or not at all.
Macros use this control in four major ways:

1. Transformation. The Common Lisp setf macroisone of aclass of macros
which pick apart their arguments before evaluation. A built-in access func-
tion will often have a converse whose purpose is to set what the access
function retrieves. The converse of car is rplaca, of cdr, rplacd, and
so on. With setf we can use calls to such access functions as if they were
variables to be set, asin (setf (car x) ’a), which could expand into
(progn (rplaca x ’a) ’a).

To perform this trick, setf has to look inside its first argument. To know
that the case aboverequiresrplaca, setf must be able to see that the first
argument is an expression beginning with car. Thus setf, and any other
operator which transforms its arguments, must be written as a macro.

2. Binding. Lexical variablesmust appear directly inthe sourcecode. Thefirst
argument to setq is not evaluated, for example, so anything built on setq
must be a macro which expandsinto a setq, rather than a function which

108

WHEN TO USE MACROS

callsit. Likewise for operatorslike 1et, whose arguments are to appear as
parametersin a lambda expression, for macros like do which expand into
lets, and so on. Any new operator which isto alter the lexical bindings of
its arguments must be written as a macro.

Conditional evaluation. All the arguments to a function are evaluated. In
constructs like when, we want some arguments to be evaluated only under
certain conditions. Such flexibility is only possible with macros.

Multiple evaluation. Not only arethe argumentsto afunction all evaluated,
they are all evaluated exactly once. We need a macro to define a construct
like do, where certain arguments are to be evaluated repeatedly.

There are also several ways to take advantage of the inline expansion of macros.
It's important to emphasize that the expansions thus appear in the lexical context
of the macro call, since two of the three uses for macros depend on that fact. They

are:

5. Using the calling environment. A macro can generate an expansion con-

taining a variable whose binding comes from the context of the macro call.
The behavior of the following macro:

(defmacro foo (x)
“+ ,xy))

depends on the binding of y where foo is called.

Thiskind of lexical intercourseis usualy viewed more as a source of con-
tagion than a source of pleasure. Usually it would be bad style to write such
amacro. Theidea of functional programming applies as well to macros:
the preferred way to communicate with a macro is through its parameters.
Indeed, it is so rarely necessary to use the calling environment that most
of the time it happens, it happens by mistake. (See Chapter 9.) Of dl the
macrosin thisbook, only the continuati on-passing macros (Chapter 20) and
some parts of the ATN compiler (Chapter 23) use the calling environment in
this way.

. Wrapping a new environment. A macro can also cause its arguments to

be evaluated in a new lexical environment. The classic example is let,
which could be implemented as a macro on lambda (page 144). Within
the body of an expressionlike (1et ((y 2)) (+ x y)),ywill refertoa
new variable.

8.2 MACRO OR FUNCTION? 109

7. Saving function calls. The third consequence of the inline insertion of
macroexpansionsis that in compiled code there is no overhead associated
with a macro call. By runtime, the macro call has been replaced by its
expansion. (The sameistruein principle of functionsdeclared inline.)

Significantly, cases 5 and 6, when unintentional, constitute the problem of variable
capture, which is probably the worst thing a macro writer has to fear. Variable
captureis discussed in Chapter 9.

Instead of seven ways of using macros, it might be better to say that there are
six and ahalf. Inanideal world, all Common Lisp compilerswould obey inline
declarations, and saving function calls would be a task for inline functions, not
macros. An ideal world is left as an exercise to the reader.

8.2 Macroor Function?

The previous section dealt with the easy cases. Any operator that needs access
to its parameters before they are evaluated should be written as a macro, because
thereis no other choice. What about those operatorswhich could be written either
way? Consider for example the operator avg, which returns the average of its
arguments. It could be defined as a function

(defun avg (&rest args)
(/ (apply #’+ args) (length args)))

but thereis agood case for defining it as a macro,

(defmacro avg (&rest args)
“(/ (+ ,Gargs) ,(length args)))

becausethefunction versionwould entail an unnecessary call to length eachtime
avg was called. At compile-time we may not know the values of the arguments,
but we do know how many there are, so the call to length could just as well be
made then. Here are several points to consider when we face such choices:

THE PrOS

1. Computation at compile-time. A macro call involves computation at two
times: when the macro is expanded, and when the expansion is eval uated.
All the macroexpansion in a Lisp program is done when the program is
compiled, and every bit of computation which can be done at compile-time
is one hit that won't slow the program down when it's running. If an
operator could be written to do some of its work in the macroexpansion
stage, it will be more efficient to make it amacro, because whatever work a

110 WHEN TO USE MACROS

smart compiler can’t do itself, afunction has to do at runtime. Chapter 13
describesmacroslike avg which do someof their work during the expansion
phase.

2. Integration with Lisp. Sometimes, using macros instead of functions will
make a program more closely integrated with Lisp. Instead of writing a
program to solve a certain problem, you may be able to use macros to
transform the problem into one that Lisp already knows how to solve. This
approach, when possible, will usually make programsboth smaller and more
efficient; smaller because Lisp is doing some of your work for you, and
more efficient because production Lisp systems generally have had more
of the fat sweated out of them than user programs. This advantage appears
mostly in embedded languages, which are described starting in Chapter 19.

3. Saving function calls. A macro call is expanded right into the code where
it appears. So if you write some frequently used piece of code as a macro,
you can save afunction call every timeit'sused. In earlier dialects of Lisp,
programmers took advantage of this property of macros to save function
callsat runtime. In Common Lisp, thisjob is supposed to be taken over by
functionsdeclared inline.

By declaring a function to be inline, you ask for it to be compiled right
into the calling code, just like a macro. However, there is a gap between
theory and practice here; cLTL2 (p. 229) says that “a compiler is free to
ignorethis declaration,” and some Common Lisp compilersdo. It may still
be reasonabl e to use macros to save function calls, if you are compelled to
use such acompiler.

In some cases, the combined advantages of efficiency and close integration
with Lisp can create a strong argument for the use of macros. In the query
compiler of Chapter 19, the amount of computation which can be shifted forward
to compile-time is so great that it justifies turning the whole program into a
single giant macro. Though done for speed, this shift also brings the program
closer to Lisp: inthe new version, it's easier to use Lisp expressions—arithmetic
expressions, for example—within queries.

THE CONS

4. Functionsare data, while macrosare morelikeinstructionsto the compiler.
Functions can be passed asarguments(e.g. to apply), returned by functions,
or stored in data structures. None of these things are possible with macros.

In some cases, you can get what you want by enclosing themacro call within
a lambda-expression. This works, for example, if you want to apply or
funcall certain macros:

8.3 APPLICATIONS FOR MACROS 111

> (funcall #’(lambda (x y) (avg x y)) 1 3)
2

However, thisis an inconvenience. It doesn't always work, either: even if,
like avg, the macro has an &rest parameter, there is no way to passit a
varying number of arguments.

5. Clarity of source code. Macro definitions can be harder to read than the
equivalent function definitions. So if writing something as a macro would
only make a program marginally better, it might be better to use afunction
instead.

6. Clarity at runtime. Macros are sometimes harder to debug than functions.
If you get a runtime error in code which contains a lot of macro cals, the
code you see in the backtrace could consist of the expansions of al those
macro calls, and may bear little resemblance to the code you originally
wrote.

And because macros disappear when expanded, they are not accountable at
runtime. You can't usually use trace to see how amacrois being called.
If it worked at all, trace would show you the call to the macro’s expander
function, not the macro call itself.

7. Recursion. Using recursion in macrosis not so simple asit isin functions.
Although the expansion function of amacro may berecursive, the expansion
itself may not be. Section 10.4 dealswith the subject of recursionin macros.

All these considerations have to be balanced against one another in deciding
when to use macros. Only experience can tell which will predominate. However,
the exampl es of macroswhich appear inlater chapters cover most of the situations
in which macros are useful. |f a potential macro is analogous to one given here,
then it is probably safe to writeit as such.

Finally, it should be noted that clarity at runtime (point 6) rarely becomes an
issue. Debugging code which uses alot of macros will not be as difficult as you
might expect. If macro definitions were several hundred lines long, it might be
unpleasant to debug their expansions at runtime. But utilities, at least, tend to be
written in small, trusted layers. Generally their definitions are less than 15 lines
long. So evenif you are reduced to poring over backtraces, such macroswill not
cloud your view very much.

8.3 Applicationsfor Macros

Having considered what can be done with macros, the next question to ask is:
in what sorts of applications can we use them? The closest thing to a general

112 WHEN TO USE MACROS

description of macro use would be to say that they are used mainly for syntactic
transformations. This is not to suggest that the scope for macros is restricted.
Since Lisp programs are made from? lists, which are Lisp data structures, “syn-
tactic transformation” can go along way indeed. Chapters 19-24 present whole
programs whose purpose could be described as syntactic transformation, and
which are, in effect, all macro.

Macro applications form a continuum between small general-purpose macros
likewhile, andthelarge, special-purpose macrosdefinedinthelater chapters. On
one end are the utilities, the macros resembling those that every Lisp has built-in.
They are usually small, general, and written in isolation. However, you can write
utilities for specific classes of programs too, and when you have a collection of
macros for usein, say, graphics programs, they begin to look like a programming
languagefor graphics. At the far end of the continuum, macrosallow you to write
whole programsin alanguage distinctly different from Lisp. Macros used in this
way are said to implement embedded |languages.

Utilities are the first offspring of the bottom-up style. Even when a program
istoo small to be built in layers, it may still benefit from additions to the lowest
layer, Lisp itself. The utility nil!, which setsits argument to nil, could not be
defined except as a macro:

(defmacro nil! (x)
“(setf ,x nil))

Looking at nil!, oneistempted to say that it doesn't do anything, that it merely
saves typing. True, but al any macro does is save typing. If one wants to
think of it in these terms, the job of a compiler is to save typing in machine
language. The value of utilities should not be underestimated, because their effect
is cumulative: several layers of simple macros can make the difference between
an elegant program and an incomprehensible one.

Most utilities are patterns embodied. When you notice a patternin your code,
consider turning it into a utility. Petterns are just the sort of thing computers are
good at. Why should you bother following them when you could have a program
do it for you? Suppose that in writing some program you find yourself using in
many different places do loops of the same general form:

(do O
((not (condition)))
(body of code))

IMade from, in the sense that lists are the input to the compiler. Functions are no longer made of
lists, asthey used to be in some earlier dialects.

8.3 APPLICATIONS FOR MACROS 113

When you find a pattern repeated through your code, that pattern often hasaname.
The name of this patterniswhile. If wewant to provideitinanew utility, we will
have to use a macro, because we need conditional and repested evaluation. If we
define while using this definition from page 91:

(defmacro while (test &body body)
“(do O
((not ,test))
,@body))

then we can replace the instances of the pattern with

(while (condition)
(body of code))

Doing so will make the code shorter and also make it declare in a clearer voice
what it's doing.

The ability to transform their arguments makes macros useful in writing in-
terfaces. The appropriate macro will make it possible to type a shorter, smpler
expression where a long or complex one would have been required. Although
graphic interfaces decrease the need to write such macrosfor end users, program-
mers use this type of macro as much as ever. The most common example is
defun, which makesthe binding of functions resemble, on the surface, afunction
definition in alanguage like Pascal or C. Chapter 2 mentioned that the following
two expressions have approximately the same effect:

(defun foo (x) (x x 2))

(setf (symbol-function ’foo)
#’ (lambda (x) (* x 2)))

Thus defun can beimplemented as a macro which turnsthe former into the latter.
We could imagine it written as follows:2

(defmacro our-defun (name parms &body body)
‘ (progn
(setf (symbol-function ’,name)
#’ (lambda ,parms (block ,name ,@body)))
’ ,name))

Macroslikewhile andnil! could be described as general-purpose utilities.
Any Lisp program might use them. But particular domains can havetheir utilities

2For clarity, this version ignores al the bookkeeping that defun must perform.

114 WHEN TO USE MACROS

(defun move-objs (objs dx dy)
(multiple-value-bind (x0 yO x1 y1) (bounds objs)

(dolist (o objs)
(incf (obj-x o) dx)
(incf (obj-y o) dy))

(multiple-value-bind (xa ya xb yb) (bounds objs)
(redraw (min x0 xa) (min yO ya)

(max x1 xb) (max y1 yb)))))

(defun scale-objs (objs factor)
(multiple-value-bind (x0 yO x1 y1) (bounds objs)

(dolist (o objs)

(setf (obj-dx o) (* (obj-dx o) factor)

(obj-dy o) (* (obj-dy o) factor)))

(multiple-value-bind (xa ya xb yb) (bounds objs)

(redraw (min x0 xa) (min yO ya)

(max x1 xb) (max y1 yb)))))

Figure 8.1: Origina move and scale.

as well. Thereis no reason to suppose that base Lisp is the only level at which
you have a programming language to extend. If you're writing a CAD program,
for example, the best results will sometimes come fromwriting it intwo layers. a
language (or if you prefer a more modest term, a toolkit) for CAD programs, and
in the layer above, your particular application.

Lisp blurs many distinctions which other languages take for granted. In
other languages, there really are conceptua distinctions between compile-time
and runtime, program and data, language and program. In Lisp, these distinctions
exist only as conversational conventions. There is no line dividing, for example,
language and program. You can draw the line wherever suits the problem at
hand. So it really is no more than a question of terminology whether to call an
underlying layer of code a toolkit or a language. One advantage of considering
it as alanguageis that it suggests you can extend this language, as you do Lisp,
with utilities.

Suppose we are writing an interactive 2D drawing program. For simplicity,
we will assume that the only objects handled by the program are line segments,
represented as an origin (x,y) and a vector (dx,dy). One of the things such a
program will have to do is slide groups of objects. This is the purpose of the
function move-objs in Figure 8.1. For efficiency, we don’t want to redraw the
whole screen after each operation—only the parts which have changed. Hence

8.3 APPLICATIONS FOR MACROS 115

(defmacro with-redraw ((var objs) &body body)
(let ((gob (gensym))
(x0 (gensym)) (yO (gensym))
(x1 (gensym)) (yl1 (gensym)))
‘(let ((,gob ,objs))
(multiple-value-bind (,x0 ,y0 ,x1 ,y1) (bounds ,gob)
(dolist (,var ,gob) ,@body)
(multiple-value-bind (xa ya xb yb) (bounds ,gob)
(redraw (min ,x0 xa) (min ,yO0 ya)
(max ,x1 xb) (max ,yl yb)))))))

(defun move-objs (objs dx dy)
(with-redraw (o objs)
(incf (obj-x o) dx)
(incf (obj-y o) dy)))

(defun scale-objs (objs factor)
(with-redraw (o objs)
(setf (obj-dx o) (* (obj-dx o) factor)
(obj-dy o) (x (obj-dy o) factor))))

Figure 8.2: Move and scale fill eted.

the two calls to the function bounds, which returns four coordinates (min x, min
Yy, max x, max y) representing the bounding rectangle of a group of objects. The
operative part of move-objs is sandwiched between two calls to bounds which
find the bounding rectangle before and then after the movement, and then redraw
the entire affected region.

The function scale-objs is for changing the size of a group of objects.
Since the bounding region could grow or shrink depending on the scale factor,
this function too must do its work between two calls to bounds. As we wrote
more of the program, we would see more of this pattern: in functions to rotate,
flip, transpose, and so on.

With a macro we can abstract out the code that these functionswould al have
in common. The macro with-redraw in Figure 8.2 provides the skeleton that
the functions in Figure 8.1 share.® As a result, they can now be defined in four
lines each, as at the end of Figure 8.2. With these two functions the new macro
has already paid for itself in brevity. And how much clearer the two functions o

3The definition of this macro anticipates the next chapter by using gensyms. Their purpose will be
explained shortly.

116 WHEN TO USE MACROS

become once the details of screen redrawing are abstracted away.

One way to view with-redraw is as a construct in a language for writing
interactivedrawing programs. Aswe devel op more such macros, they will cometo
resemble a programming language in fact as well asin name, and our application
itself will begin to show the elegance one would expect in a program writtenin a
language defined for its specific needs.

The other major use of macros is to implement embedded languages. Lisp
is an exceptionally good language in which to write programming languages,
because Lisp programs can be expressed as lists, and Lisp has a built-in parser
(read) and compiler (compile) for programsso expressed. Most of thetimeyou
don’teven haveto call compile; you can have your embedded |anguage compiled
implicitly, by compiling the code which does the transformations (page 25).

An embedded language is one which is not written on top of Lisp so much
as commingled with it, so that the syntax is a mixture of Lisp and constructs
specific to the new language. The naive way to implement an embedded language
is to write an interpreter for it in Lisp. A better approach, when possible, is
to implement the language by transformation: transform each expression into
the Lisp code that the interpreter would have run in order to evaluate it. That's
where macros come in. The job of macros is precisely to transform one type
of expression into another, so they’re the natural choice when writing embedded
languages.

In general, the more an embedded language can be implemented by transfor-
mation, the better. For one, it's less work. If the new language has arithmetic,
for example, you needn’t face all the complexities of representing and manipu-
lating numeric quantities. If Lisp’s arithmetic capabilities are sufficient for your
purposes, then you can simply transform your arithmetic expressions into the
equivalent Lisp ones, and leave the rest to the Lisp.

Using transformationwill ordinarily make your embedded languagesfaster as
well. Interpreters have inherent disadvantages with respect to speed. When code
occurswithinaloop, for example, aninterpreter will often haveto dowork on each
iteration which in compiled code could have been done just once. An embedded
languagewhich hasitsown interpreter will therefore be slow, evenif theinterpreter
itself iscompiled. But if the expressionsin the new language are transformed into
Lisp, the resulting code can then be compiled by the Lisp compiler. A language
so implemented need suffer none of the overheads of interpretation at runtime.
Short of writing a true compiler for your language, macros will yield the best
performance. In fact, the macros which transform the new language can be seen
as a compiler for it—just one which relies on the existing Lisp compiler to do
most of the work.

We won't consider any examples of embedded languages here, since Chap-
ters 19-25 are al devoted to the topic. Chapter 19 deals specifically with the dif-

8.3 APPLICATIONS FOR MACROS 117

ference between interpreting and transforming embedded languages, and shows
the same language implemented by each of the two methods.

One book on Common Lisp asserts that the scope for macrosis limited, citing
as evidence the fact that, of the operators defined in cLTL1, less than 10% were
macros. Thisis like saying that since our house is made of bricks, our furniture
will be too. The proportion of macros in a Common Lisp program will depend
entirely on what it's supposed to do. Some programs will contain no macros.
Some programs could be all macros.

Variable Capture

Macros are vulnerable to a problem called variable capture. Variable capture
occurs when macroexpansion causes a hame clash: when some symbol ends up
referring to a variable from another context. Inadvertent variable capture can
cause extremely subtle bugs. This chapter is about how to foresee and avoid
them. However, intentional variable capture is a useful programming technique,
and Chapter 14 is full of macroswhich rely onit.

9.1 MacroArgument Capture

A macro vulnerableto unintended variable captureisamacrowith abug. To avoid
writing such macros, we must know precisely when capture can occur. |nstances
of variable capture can be traced to one of two situations; macro argument capture
and free symbol capture. In argument capture, a symbol passed as an argumentin
themacro call inadvertently refersto avariable established by the macro expansion
itself. Consider the following definition of the macro for, which iterates over a
body of expressionslike a Pascal for loop:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))
(1imit ,stop))
((> ,var limit))
,@body))

This macro looks correct at first sight. It even seems to work fine;

118

9.2 FREE SYMBOL CAPTURE 119

> (for (x 1 5)
(princ x))

12345

NIL

Indeed, the error is so subtle that we might use this version of the macro hundreds
of times and have it always work perfectly. Not if we call it this way, though:

(for (1imit 1 5)
(princ limit))

We might expect this expression to have the same effect as the one before. But it
doesn’t print anything; it generatesan error. To see why, welook at its expansion:

(do ((limit 1 (1+ limit))
(limit 5))
(> limit 1limit))
(princ limit))

Now it's obvious what goes wrong. There is a name clash between a symbol
local to the macro expansion and a symbol passed as an argument to the macro.
The macroexpansion captures 1imit. It ends up occurring twice in the same do,
whichisillegal.

Errorscaused by variable capturearerare, but what they lack in frequency they
make up in viciousness. This capture was comparatively mild—here, at least, we
got an error. More often than not, a capturing macro would simply yield incorrect
results with no indication that anything was wrong. In this case,

> (let ((limit 5))
(for (i 1 10)
(when (> i 1limit)
(princ i))))
NIL

the resulting code quietly does nothing.

9.2 Free Symbol Capture

Less frequently, the macro definition itself contains a symbol which inadvertently
refers to a binding in the environment where the macro is expanded. Suppose
some program, instead of printing warningsto the user asthey arise, wantsto store
the warnings in a list, to be examined later. One person writes a macro gripe,
which takes a warning message and adds it to aglobal list, w:

120 VARIABLE CAPTURE

(defvar w nil)

(defmacro gripe (warning) ; wrong
‘(progn (setq w (nconc w (list ,warning)))
nil))

Someone else then wants to write a function sample-ratio, to return the ratio
of the lengths of two lists. If either of the lists has less than two elements, the
function is to return nil instead, also issuing a warning that it was called on a
statistically insignificant case. (Actual warnings could be more informative, but
their content isn’t relevant to this example.)

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))
(gripe "sample < 2")
(/ vn wn))))

If sample-ratio is called with w = (b), then it will want to warn that one of its
arguments, with only one element, is statistically insignificant. But when the call
to gripe isexpanded, it will be asif sample-ratio had been defined:

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))
(progn (setq w (nconc w (list "sample < 2")))
nil)
(/ vn wn))))

The problem here is that gripe is used in a context where w has its own local
binding. The warning, instead of being saved in the global warning list, will be
nconced onto the end of one of the parameters of sample-ratio. Not only is
thewarning lost, but thelist (b), which is probably used as data el sewherein the
program, will have an extraneous string appended to it:

> (let ((1st ’(b)))
(sample-ratio nil 1lst)
1st)

(B "sample < 2")

> w

NIL

9.3 WHEN CAPTURE OCCURS 121

9.3 When Capture Occurs

It's asking a lot of the macro writer to be able to look at a macro definition and
foreseeall the possible problemsarising from these two types of capture. Variable
capture is a subtle matter, and it takes some experience to anticipate al the ways
a capturable symbol could wreak mischief in a program. Fortunately, you can
detect and eliminate capturable symbolsin your macro definitions without having
to think about how their capture could send your program awry. This section
provides a straightforward rule for detecting capturable symbols. The remaining
sections of this chapter explain techniques for eliminating them.

The rule for defining a capturable variable depends on some subordinate
concepts, which must be defined first;

Free: A symbol soccursfreein an expressionwhenit isused asavariablein that
expression, but the expression does not create a binding for it.

In the following expression,

(let ((x y) (z 10))
(list w x z))

w, x and z al occur freewithinthe1ist expression, which establishesno bindings.
However, the enclosing 1et expression establishes bindingsfor x and z, so within
thelet asawhole, only y and w occur free. Note that in

(let ((x %))

x)

the second instance of x isfree—it’snot within the scope of the new binding being
established for x.

Skeleton: The skeleton of a macro expansion is the whole expansion, minus
anything which was part of an argument in the macro call.

If foo isdefined:

(defmacro foo (x y)

“/ + ,x 1) L,y
and called thus:
(foo (- 5 2) 6)

then it yields the macro expansion:

122 VARIABLE CAPTURE

(/ (+ (-52) 1) 6)

The skeleton of this expansion is the above expression with holes where the
parametersx and y got inserted:

(/ IDNED)

With these two concepts defined, it's possible to state a concise rule for
detecting capturable symbols:

Capturable: A symbol is capturable in some macro expansion if (@) it occurs
free in the skeleton of the macro expansion, or (b) it is bound by a part of
the skeleton in which arguments passed to the macro are either bound or
evaluated.

Some examples will show the implications of thisrule. In the simplest case:

(defmacro capl ()
Y+ x 1)

x is capturable because it will occur free in the skeleton. That's what caused the
bug in gripe. Inthismacro:

(defmacro cap2 (var)
“(let ((x ...)
(,var ...))

o))

x is capturable because it is bound in an expression where an argument to the
macro call will also be bound. (That’swhat went wrongin for.) Likewisefor the
following two macros

(defmacro cap3 (var)

‘(let ((x ...))
(let ((,var ...))
o))

(defmacro cap4 (var)

‘(let ((,var ...))

(et ((x ...))
)

in both of which x is capturable. However, if there is no context in which the
binding of x and the variable passed as an argument will both be visible, asin

9.3 WHEN CAPTURE OCCURS 123

(defmacro safel (var)
“(progn (let ((x 1))
(print x))
(let ((,var 1))
(print ,var))))

then x won't be capturable. Not all variables bound by the skeleton are at risk.
However, if argumentsto the macro call are evaluated within abinding established
by the skeleton,

(defmacro cap5 (&body body)
“(let ((x ...))
,@body))

then variables so bound are at risk of capture: in cap5, x is capturable. In this
case, though,

(defmacro safe2 (expr)
“(let ((x ,expr))
(cons x 1))

x is not capturable, because when the argument passed to expr is evaluated, the
new binding of x won't be visible. Note also that it's only the binding of skeletal
variables we have to worry about. In this macro

(defmacro safe3 (var &body body)
‘(let ((,var ...))
,@body))

no symbol isat risk of inadvertent capture (assuming that the user expectsthat the
first argument will be bound).

Now let's look at the original definition of for in light of the new rule for
identifying capturable symbols:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))
(1imit ,stop))
((> ,var 1limit))
,@body))

It turns out now that this definition of for is vulnerable to capture in two ways:
limit could be passed as the first argument to for, asin the original example:

(for (limit 1 5)
(princ limit))

124 VARIABLE CAPTURE

but it'sjust as dangerousif 1imit occursin the body of the loop:

(let ((limit 0))
(for (x 1 10)
(incf limit x))
limit)

Someone using for in this way would be expecting his own binding of 1imit to
be the one incremented in the loop, and the expression as awhole to return 55; in
fact, only the binding of 1imit generated by the skeleton of the expansion will
be incremented:

(do ((x 1 (1+ x))
(1imit 10))

((> x 1limit))
(incf limit x))

and since that’s the one which controlsiteration, the loop won’t even terminate.

Therulespresentedin this section should be used with the reservation that they
areintended only asaguide. They are not even formally stated, let aloneformally
correct. The problem of capture is a vaguely defined one, since it depends on
expectations. For example, in an expression like

(let ((x 1)) (1ist %))

we don't regard it as an error that when (1ist x) isevaluated, x will refer to a
new variable. That'swhat 1et is supposed to do. Therulesfor detecting capture
are also imprecise. You could write macros which passed these tests, and which
still would be vulnerable to unintended capture. For example,

(defmacro pathological (&body body) ; wrong
(let* ((syms (remove-if (complement #’symbolp)
(flatten body)))
(var (nth (random (length syms))
syms)))
“(let ((,var 99))
,@body)))

When this macro is called, the expressions in the body will be evaluated as if in
a progn—but one random variable within the body may have a different value.
Thisis clearly capture, but it passes our tests, because the variable does not occur
in the skeleton. In practice, though, the rules will work nearly al the time: one
rarely (if ever) wantsto write a macro like the example above.

9.5 AVOIDING CAPTURE WITH BETTER NAMES 125

Vulnerableto capture:

(defmacro before (x y seq)
‘(let ((seq ,seq))
(< (position ,x seq)
(position ,y seq))))

A correct version:

(defmacro before (x y seq)
“(let ((xval ,x) (yval ,y) (seq ,seq))
(< (position xval seq)
(position yval seq))))

Figure 9.1: Avoiding capture with let.

9.4 Avoiding Capture with Better Names

The first two sections divided instances of variable capture into two types. ar-
gument capture, where a symbol used in an argument is caught by a binding
established by the macro skeleton, and free symbol capture, where a free symbol
in a macroexpansion is caught by a binding in force where the macro is ex-
panded. The latter cases are usually dealt with simply by giving global variables
distinguished names. In Common Lisp, it is traditional to give global variables
names which begin and end with asterisks. The variable defining the current
package is called *packagex*, for example. (Such a name may be pronounced
“star-package-star” to emphasize that it is not an ordinary variable.)

So redly it was the responsibility of the author of gripe to store warnings
in avariable called something like *warningsx*, rather than just w. If the author
of sample-ratio had used *warnings* as a parameter, then he would deserve
every bug he got, but he can’t be blamed for thinking that it would be safe to call
a parameter w.

9.5 Avoiding Capture by Prior Evaluation

Sometimes argument capture can be cured simply by evaluating the endan-
gered arguments outside of any bindings created by the macroexpansion. The
simplest cases can be handled by beginning the macro with a 1et expression.
Figure 9.1 contains two versions of the macro before, which takes two objects
and a sequence, and returnstrueiff the first object occurs before the second in the

126 VARIABLE CAPTURE

sequence.r The first definition is incorrect. Itsinitial 1et ensures that the form
passed as seq isonly evaluated once, but it is not sufficient to avoid the following
problem:

> (before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

NIL

This amounts to asking “Is a before b in (a)7’ If before were correct, it
would return true. Macroexpansion shows what really happens:. the evaluation of
the first argument to < rearrangesthe list to be searched in the second.

(let ((seq ’(a b)))
(< (position (progn (setq seq ’(b a)) ’a)
seq)
(position ’b seq)))

To avoid this problem, it will suffice to evaluate all the argumentsfirst in one big
let. The second definition in Figure 9.1 is thus safe from capture.

Unfortunately, the 1et technique works only in a narrow range of cases:
macros where

1. al the arguments at risk of capture are evaluated exactly once, and

2. none of the arguments need to be evaluated in the scope of bindings estab-
lished by the macro skeleton.

This rules out a great many macros. The proposed for macro violates both
conditions. However, we can use a variation of this scheme to make macros like
for safefrom capture: towrapitsbody formswithin alambda-expressionoutside
of any locally created bindings.

Some macros, including those for iteration, yield expansions where expres-
sions appearing in the macro call will be evaluated within newly established
bindings. In the definition of for, for example, the body of the loop must be
evaluated within a do created by the macro. Variables occurring in the body of
the loop are thus vulnerable to capture by bindings established by the do. We
can protect variables in the body from such capture by wrapping the body in a
closure, and, within the loop, instead of inserting the expressions themselves,
simply funcalling the closure.

Figure 9.2 showsaversion of for which usesthistechnique. Sincetheclosure

1This macro is used only as an example. Really it should neither be implemented as a macro, nor
use the inefficient algorithm that it does. For a proper definition, see page 50.

9.6 AVOIDING CAPTURE BY PRIOR EVALUATION 127

Vulnerableto capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))
(1imit ,stop))
((> ,var limit))
,@body))

A correct version:

(defmacro for ((var start stop) &body body)
‘(do ((b #’(lambda (,var) ,@body))
(count ,start (1+ count))
(limit ,stop))
((> count 1limit))
(funcall b count)))

Figure 9.2: Avoiding capture with aclosure.

is the first thing made by the expansion of a for, free symbols occurring in the
body will all refer to variablesin the environment of the macro call. Now the do
communicateswith its body through the parameters of the closure. All the closure
needs to know from the do is the number of the current iteration, so it has only
one parameter, the symbol specified as the index variablein the macro call.

The technique of wrapping expressionsin lambdasis not a universal remedy.
You can use it to protect a body of code, but closures won’t be any use when, for
example, thereisarisk of the same variable being bound twice by the same 1et or
do (asin our original broken for). Fortunately, in this case, by rewriting for to
package its body in a closure, we also eliminated the need for the do to establish
bindings for the var argument. The var argument of the old for became the
parameter of the closure and could be replaced in the do by an actual symboal,
count. So the new definition of for is completely immune from capture, as the
test in Section 9.3 will show.

The disadvantage of using closures is that they might be less efficient. We
could be introducing another function call. Potentially worse, if the compiler
doesn’t give the closure dynamic extent, space for it will have to be allocated in
the heap at runtime.

128 VARIABLE CAPTURE

9.6 Avoiding Capture with Gensyms

There is one certain way to avoid macro argument capture: replacing capturable
symbols with gensyms. In the original version of for, problems arise when two
symbolsinadvertently havethe same name. If wewant to avoid the possibility that
amacro skeleton will contain a symbol also used by the calling code, we might
hope to get away with using only strangely named symbols in macro definitions:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))
(xsf2jsh ,stop))
((> ,var xsf2jsh))
,@body))

but this is no solution. It doesn’t eliminate the bug, just makes it less likely to
show. And not so very less likely at that—it's still possible to imagine conflicts
arising in nested instances of the same macro.

We need some way to ensure that a symbol is unique. The Common Lisp
function gensym existsjust for this purpose. It returnsasymbol, called agensym,
which is guaranteed not to be eq to any symbol either typed in or constructed by
aprogram.

How can Lisp promise this? In Common Lisp, each package keeps a list of
al the symbols known in that package. (For an introduction to packages, see
page 381.) A symbol which is on the list is said to be interned in the package.
Each call to gensym returnsaunique, uninterned symbol. And since every symbol
seen by read gets interned, no one could type anything identical to a gensym.
Thus, if you begin the expression

(eq (gensym) ...

thereis no way to completeit that will cause it to return true.

Asking gensym to makeyou asymbol isliketaking the approach of choosinga
strangely named symbol one step further—gensym will give you a symbol whose
nameisn’t even in the phone book. When Lisp hasto display a gensym,

> (gensym)
#:G4T

what it prints is really just Lisp’s equivalent of “John Doe,” an arbitrary name
made up for something whose name is irrelevant. And to be sure that we don't
have any illusions about this, gensyms are displayed preceded by a sharp-colon,
a special read-macro which exists just to cause an error if we ever try to read the
gensym in again.

9.7 AVOIDING CAPTURE WITH GENSYMS 129

Vulnerableto capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))
(1imit ,stop))
((> ,var limit))
,@body))

A correct version:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))
(,gstop ,stop))
((> ,var ,gstop))
,@body)))

Figure 9.3: Avoiding capture with gensym.

In cLTL2 Common Lisp, the number in a gensym'’s printed representation
comes from *gensym-counterx*, a globa variable always bound to an integer.
By resetting this counter we can cause two gensymsto print the same

> (setq x (gensym))

#:G48

> (setq *gensym-counter* 48 y (gensym))
#:G48

> (eq x y)

NIL

but they won’t be identical .

Figure 9.3 containsacorrect definition of for using gensyms. Now thereisno
limit to clash with symbols in forms passed to the macro. It has been replaced
by a symbol gensymed on the spot. In each expansion of the macro, the place of
limit will betaken by a unique symbol created at expansion-time.

The correct definition of for isacomplicated one to produce on the first try.
Finished code, like a finished theorem, often coversup alot of trial and error. So
don’t worry if you have to write several versions of a macro. To begin writing
macros like for, you may want to write the first version without thinking about
variable capture, and then to go back and make gensyms for symbolswhich could
be involved in captures.

130 VARIABLE CAPTURE

9.7 Avoiding Capture with Packages

To some extent, it is possible to avoid capture by defining macros in their own
package. If you create amacros package and define for there, you can even use
the definition given first

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))
(1imit ,stop))
((> ,var limit))
,@body))

and call it safely from any other package. If you call for from another package,
say mycode, then even if you do use 1limit as the first argument, it will be
mycode: : limit—adistinct symbol frommacros: :1imit, which occursin the
macro skeleton.

However, packages do not provide a very general solution to the problem of
capture. In the first place, macros are an integral part of some programs, and it
would be inconvenient to have to separate them in their own package. Second,
this approach offers no protection against capture by other code in the macros
package.

9.8 Capturein Other Name-Spaces

The previous sections have spoken of captureasif it wereaproblem which afflicted
variables exclusively. Although most captureis variable capture, the problem can
arisein Common Lisp’s other name-spaces as well.

Functions may also be locally bound, and function bindings are equally liable
to inadvertent capture. For example:

> (defun fn (x) (+ x 1))

FN

> (defmacro mac (x) ‘(fn ,x))

MAC

> (mac 10)

11

> (labels ((fn (y) (- y 1)
(mac 10))

9

As predicted by the capture rule, the £n which occurs free in the skeleton of mac
is at risk of capture. When fn is locally rebound, mac returns a different value
than it does generally.

9.9 CAPTURE IN OTHER NAME-SPACES 131

What to do about this case? When the symbol at risk of captureisthe name of
abuilt-in function or macro, then it's reasonable to do nothing. In cLTL2 (p. 260)
if the name of anything built-in is given alocal function or macro binding, “the
consequencesare undefined." Soit wouldn’'t matter what your macro did—anyone
who rebinds built-in functionsis going to have problems with more than just your
macros.

Otherwise, you can protect function names against macro argument capture
the same way you would protect variable names: by using gensyms as names
for any functions given local definitions by the macro skeleton. Avoiding free
symbol capture, as in the case above, is a bit more difficult. The way to protect
variables against free symbol capture was to give them distinctly global names:
e.g. *warningsx*instead of w. Thissolutionisnot practical for functions, because
there is no convention for distinguishing the names of globa functions—most
functions are global. If you're concerned about a macro being called in an
environment whereafunction it needs might belocally redefined, the best solution
is probably to put your code in a distinct package.

Block-names are also liable to capture, as are the tags used by go and throw.
When your macros need such symbols, you should use gensyms, asin thedefinition
of our-do on page 98.

Remember also that operatorslike do areimplicitly enclosed in ablock named
nil. Thusareturn or return-from nil within ado returns from the do, not
the containing expression:

> (block nil

(list ’a
(do ((x 1 (1+ x)))
(nil)
(if (> x 5)
(return-from nil x)
(princ x)))))
12345
(A 6)

If do didn’t create a block named nil, this example would have returned just 6,
rather than (A 6).

The implicit block in do is not a problem, because do is advertised to behave
thisway. However, you should realize that if you write macroswhich expand into
dos, they will capture the block name nil. In a macro like for, a return or
return-from nil will return from the for expression, not the enclosing block.

132 VARIABLE CAPTURE

9.9 Why Bother?

Some of the preceding examples are pretty pathological. Looking at them, one
might be tempted to say “variable capture is so unlikely—why even worry about
it?" There are two ways to answer this question. One is with another question:
why write programs with small bugs when you could write programs with no
bugs?

The longer answer is to point out that in real applications it's dangerous to
assume anything about the way your code will be used. Any Lisp program has
what is now called an “open architecture” If you're writing code other people
will use, they may use it in ways you'd never anticipate. And it’'s not just people
you have to worry about. Programs write programstoo. It may be that no human
would write code like

(before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

but code generated by programs often looks like this. Even if individual macros
generate simple and reasonabl e-looking expansions, once you begin to nest macro
cals, the expansions can become large programs which look like nothing any
human would write. Under such circumstances, it is worth defending against
cases, however contrived, which might make your macros expand incorrectly.

In the end, avoiding variable capture is not very difficult anyway. It soon be-
comes second-nature. The classic Common Lisp defmacro islike acook’sknife:
an elegant idea which seems dangerous, but which experts use with confidence.

10

Other Macro Pitfalls

Writing macros requires an extra degree of caution. A function is isolated in
its own lexical world, but a macro, because it is expanded into the calling code,
can give the user an unpleasant surprise unlessit is carefully written. Chapter 9
explained variable capture, the biggest such surprise. This chapter discusses four
more problems to avoid when defining macros.

10.1 Number of Evaluations

Several incorrect versionsof for appearedin the previouschapter. Figure10.1
shows two more, accompanied by a correct version for comparison.

Though not vulnerable to capture, the second for contains a bug. It will
generate an expansion in which theform passed as stop will be evaluated on each
iteration. In the best case, this kind of macro is inefficient, repeatedly doing what
it could have done just once. If stop has side-effects, the macro could actually
produce incorrect results. For example, this loop will never terminate, because
the goal recedes on each iteration:

> (let ((x 2))
(for (i 1 (incf x))
(princ 1i)))
12345678910111213. ..

Inwriting macroslike for, one must remember that the argumentsto amacro
are forms, not values. Depending on where they appear in the expansion, they

133

134 OTHER MACRO PITFALLS

A correct version:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))
(,gstop ,stop))
((> ,var ,gstop))
,@body)))

Subject to multiple evaluations:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var)))
((> ,var ,stop))
,@body))

Incorrect order of evaluation:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,gstop ,stop)
(,var ,start (1+ ,var)))
((> ,var ,gstop))
,@body)))

Figure 10.1: Controlling argument evaluation.

could be evaluated more than once. In this case, the solution is to bind a variable
to the value returned by the stop form, and refer to the variable during the loop.

Unless they are clearly intended for iteration, macros should ensure that ex-
pressions are evaluated exactly as many times as they appear in the macro call.
There are obvious cases in which this rule does not apply: the Common Lisp
or would be much less useful (it would become a Pascal or) if al its arguments
were always evaluated. But in such cases the user knows how many evaluations
to expect. Thisisn't so with the second version of for: the user has no reason to
suppose that the stop form is evaluated more than once, and in fact there is no
reason that it should be. A macro written like the second version of for is most
likely written that way by mistake.

Unintended multiple evaluation is a particularly difficult problem for macros
built on setf. Common Lisp provides several utilities to make writing such
macros easier. The problem, and the solution, are discussed in Chapter 12.

10.3 ORDER OF EVALUATION 135

10.2 Order of Evaluation

The order in which expressions are evaluated, though not as important as the
number of timesthey are evaluated, can sometimes become anissue. In Common
Lisp function calls, arguments are eval uated | eft-to-right:

> (setq x 10)

10

> (+ (setq x 3) x)
6

and it is good practice for macros to do the same. Macros should usually ensure
that expressions are evaluated in the same order that they appear in the macro call.

In Figure 10.1, the third version of for aso contains a subtle bug. The
parameter stop will be evaluated before start, even though they appear in the
opposite order in the macro call:

> (let ((x 1))
(for (i x (setq x 13))
(princ i)))

13

NIL

Thismacro givesadisconcertingimpression of going back intime. Theevaluation
of the stop form influences the value returned by the start form, even though
the start form appearsfirst textually.

The correct version of for ensuresthat its argumentswill be evaluated in the
order in which they appear:

> (let ((x 1))
(for (i x (setq x 13))
(princ 1)))
12345678910111213
NIL

Now setting x inthe stop form has no effect on the valuereturned by the previous
argument.

Although the preceding example is a contrived one, there are cases in which
this sort of problem might really happen, and such a bug would be extremely
difficult to find. Perhaps few people would write code in which the evaluation of
one argument to amacro influenced the val ue returned by another, but people may
do by accident things that they would never do on purpose. Aswell as having to
work right when used as intended, a utility must not mask bugs. If anyonewrote
code like the foregoing examples, it would probably be by mistake, but the correct
version of for will make the mistake easier to detect.

136 OTHER MACRO PITFALLS

10.3 Non-functional Expanders

Lisp expects code which generates macro expansions to be purely functional, in
the sense described in Chapter 3. Expander code should depend on nothing but
the forms passed to it as arguments, and should not try to have an effect on the
world except by returning values.

Asof cLTL2 (p. 685), it issafeto assumethat macro callsin compiled codewill
not be re-expanded at runtime. Otherwise, Common Lisp makes no guarantees
about when, or how often, amacro call will be expanded. It is considered an error
for the expansion of a macro to vary depending on either. For example, suppose
we wanted to count the number of times some macro is used. We can't simply
do a search through the source files, because the macro might be called in code
which is generated by the program. We might therefore want to define the macro
asfollows:

(defmacro nil! (x) ; wrong
(incf *nill!sx)
‘(setf ,x nil))

With this definition, the global *nil!s* will be incremented each time a call
tonil! is expanded. However, we are mistaken if we expect the value of this
variable to tell us how often nil! was called. A given call can be, and often
is, expanded more than once. For example, a preprocessor which performed
transformations on your source code might have to expand the macro callsin an
expression beforeit could decide whether or not to transform it.

As a general rule, expander code shouldn’'t depend on anything except its
arguments. So any macro which builds its expansion out of strings, for example,
should be careful not to assume anything about what the package will be at the
time of expansion. This concise but rather pathological example,

(defmacro string-call (opstring &rest args) ; wrong
“(, (intern opstring) ,Q@args))

defines amacro which takes the print name of an operator and expandsinto a call
toit:

> (defun our+ (x y) (+ x y))
OUR+

> (string-call "QUR+" 2 3)
5

Thecall to intern takesastring and returnsthe corresponding symbol. However,
if we omit the optional package argument, it does so in the current package. The

10.3 NON-FUNCTIONAL EXPANDERS 137

expansion will thus depend on the package at the time the expansion is generated,
and unless our+ is visible in that package, the expansion will be a cal to an
unknown function.

Miller and Benson's Lisp Style and Design mentions one particularly ugly
example of problems arising from side-effects in expander code. In Common
Lisp, as of cLTL2 (p. 78), the lists bound to &rest parameters are not guaranteed
to befreshly made. They may share structure with lists el sewhere in the program.
In consequence, you shouldn’t destructively modify &rest parameters, because
you don’t know what else you'll be modifying.

This possibility affects both functions and macros. With functions, problems
would arise when using apply. In avalid implementation of Common Lisp the
following could happen. Suppose we define a function et-al, which returns a
list of itsargumentswith et al added to the end:

(defun et-al (&rest args)
(nconc args (list ’et ’al)))

If we called this function normally, it would seem to work fine:

> (et-al ’smith ’jones)
(SMITH JONES ET AL)

However, if we called it viaapply, it could alter existing data structures:

> (setq greats ’(leonardo michelangelo))
(LEONARDO MICHELANGELO)

> (apply #’et-al greats)

(LEONARDO MICHELANGELO ET AL)

> greats

(LEONARDO MICHELANGELO ET AL)

At least, a valid implementation of Common Lisp could do this, though so far
none seems to.

For macros, the danger isgreater. A macrowhich altered an &rest parameter
could thereby alter the macro call. That is, you could end up with inadvertently
self-rewriting programs. The danger is also more real—it actually happens under
existing implementations. If we define a macro which nconcs something onto its
&rest argument?

(defmacro echo (&rest args)
€7, (nconc args (list ’amen)))

1¢> (foo) isequivalent to ¢ (quote , (f00)).

138 OTHER MACRO PITFALLS

and then define a function that callsiit;
(defun foo () (echo x))
in one widely used Common Lisp, the following will happen:

> (foo)

(X AMEN AMEN)

> (foo)

(X AMEN AMEN AMEN)

Not only does foo return the wrong result, it returns a different result each time,
because each macroexpansion alters the definition of foo.

Thisexample dso illustrates the point made earlier about multiple expansions
of agivenmacrocall. Inthisparticular implementation, thefirst call to foo returns
alists with two amens. For some reason this implementation expanded the macro
call once when foo was defined, aswell as once in each of the succeeding calls.

It would be safer to have defined echo as:

(defmacro echo (&rest args)
€7 (,0args amen))

because a commarat is eguivalent to an append rather than an nconc. After
redefining this macro, foo will have to be redefined as well, even if it wasn't
compiled, because the previous version of echo caused it to be rewritten.

In macros, it's not only &rest parameters which are subject to this danger.
Any macro argument which is a list should be left alone. If we define a macro
which modifies one of its arguments, and afunction which calsit,

(defmacro crazy (expr) (nconc expr (list t)))

(defun foo () (crazy (list)))

then the source code of the calling function could get modified, as happensin one
implementation the first time we cal it:

> (foo)
(TT)

This happensin compiled as well as interpreted code.

Theupshotis, don’t try to avoid consing by destructively modifying parameter
list structure. The resulting programswon't be portable, if they runat all. If you
want to avoid consing in afunction which takes a variable number of arguments,

10.4 RECURSION 139

one solution is to use amacro, and thereby shift the consing forward to compile-
time. For this application of macros, see Chapter 13.

One should also avoid performing destructive operations on the expressions
returned by macro expanders, if these expressions incorporate quoted lists. This
is not arestriction on macros per se, but an instance of the principle outlined in
Section 3.3.

10.4 Recursion

Sometimes it’s natural to define a function recursively. There's something inher-
ently recursive about afunction like this:

(defun our-length (x)
(if (null x)
0
(1+ (our-length (cdr x)))))

This definition somehow seems more natural (though probably slower) than the
iterative equivalent:

(defun our-length (x)
(do ((len O (1+ len))
(y x (cdr y)))
((null y) len)))

A function which is neither recursive, nor part of some mutually recursive set
of functions, can be transformed into a macro by the simple technique described
in Section 7.10. However, just inserting backquotes and commaswon'’t work with
arecursive function. Let’s take the built-in nth as an example. (For simplicity,
our versions of nth will do no error-checking.) Figure 10.2 shows a mistaken
attempt to definenth as amacro. Superficially, nthb appearsto be equivalent to
ntha, but a program containing a call to nthb would not compile, because the
expansion of the call would never terminate.

Ingeneral, it'sfinefor macrosto contain referencesto other macros, so long as
expansion terminates somewhere. The trouble with nthb is that every expansion
containsareferencetonthb itself. Thefunctionversion, ntha, terminatesbecause
it recurses on the value of n, which is decremented on each recursion. But
macroexpansion only has access to forms, not to their values. When the compiler
tries to macroexpand, say, (nthb x y), thefirst expansion will yield

(if (= x 0)
(car y)
(nthb (- x 1) (cdr y)))

140 OTHER MACRO PITFALLS

Thiswill work:

(defun ntha (n 1lst)
(if (=n 0)
(car 1st)
(ntha (- n 1) (cdr 1st))))

Thiswon't compile:

(defmacro nthb (n 1st)
“(if (= ,n 0)
(car ,1st)
(nthb (- ,n 1) (cdr ,1lst))))

Figure 10.2; Mistaken analogy to a recursive function.

which will in turn expand into:

(if (= x 0)
(car y)
Gf (= (-x 1) 0
(car (cdr y))
(nthb (- (- x 1) 1) (cdr (cdr y)))))

and so on into an infinite loop. It's fine for amacro to expand into a call to itself,
just so long as it doesn’t always do so.

The dangerousthing about recursivemacroslikenthb isthat they usually work
fine under the interpreter. Then when you finally have your program working and
you try to compileit, it won’t even compile. Not only that, but there will usualy
be no indication that the problem is due to a recursive macro; the compiler will
simply go into an infinite loop and leave you to figure out what went wrong.

In this case, ntha is tail-recursive. A tail-recursive function can easily be
transformed into an iterative equivalent, and then used as amodel for amacro. A
macro like nthb could be written

(defmacro nthc (n 1lst)
‘(do ((n2 ,n (1- n2))
(1st2 ,1st (cdr 1st2)))
((= n2 0) (car 1st2))))

soit isnot impossible in principle to duplicate a recursive function with a macro.
However, transforming more complicated recursive functions could be difficult,
or even impossible.

10.4 RECURSION 141

(defmacro nthd (n 1lst)
‘(nth-fn ,n ,1lst))

(defun nth-fn (n 1lst)
(if (=n 0)
(car 1st)
(nth-fn (- n 1) (cdr 1st))))

(defmacro nthe (n 1lst)
‘(labels ((nth-fn (n 1st)
(if (=n 0)
(car 1st)
(nth-fn (- n 1) (cdr 1st)))))
(nth-fn ,n ,1st)))

Figure 10.3: Two ways to fix the problem.

Depending on what you need a macro for, you may find it sufficient to use
instead a combination of macro and function. Figure 10.3 shows two ways to
make what appearsto be arecursivemacro. Thefirst strategy, embodied by nthd,
is simply to make the macro expand into a call to a recursive function. If, for
example, you need a macro only to save users the trouble of quoting arguments,
then this approach should suffice.

If you need a macro because you want its whole expansion to be inserted
into the lexical environment of the macro call, then you would more likely want
to follow the example of nthe. The built-in 1abels special form (Section 2.7)
creates a local function definition. While each expansion of nthc will call the
globally defined function nth-fn, each expansion of nthe will have its own
version of such afunction within it.

Althoughyou can’t translate arecursivefunction directly into amacro, you can
write a macro whose expansion is recursively generated. The expansion function
of amacroisaregular Lisp function, and can of course berecursive. For example,
if wewereto defineaversion of the built-in or, we would want to use arecursive
expansion function.

Figure 10.4 shows two ways of defining recursive expansion functionsfor or.
The macro ora callsthe recursive function or-expand to generate its expansion.
This macro will work, and so will the equivalent orb. Although orb recurses, it
recurses on the arguments to the macro (which are available at macroexpansion
time), not upon their values (which aren’t). It might seem as if the expansion
would contain a reference to orb itself, but the call to orb generated by one

142 OTHER MACRO PITFALLS

(defmacro ora (&rest args)
(or-expand args))

(defun or-expand (args)
(if (null args)
nil
(let ((sym (gensym)))
‘(let ((,sym ,(car args)))
(if ,sym

, Sym
, (or-expand (cdr args)))))))

(defmacro orb (&rest args)
(if (null args)
nil
(let ((sym (gensym)))
‘(let ((,sym ,(car args)))
(if ,sym

,sym
(orb ,@(cdr args)))))))

Figure 10.4: Recursive expansion functions.

macroexpansion step will be replaced by a 1et in the next one, yielding in the
final expansion nothing more than a nested stack of 1ets; (orb x y) expands
into code equivalent to:

(let ((g2 x))
(if g2
g2
(let ((g3 y))
(if g3 g3 nil))))

In fact, ora and orb are equivalent, and which style to use is just a matter of
personal preference.

11

Classic Macros

This chapter shows how to define the most commonly used types of macros.
They fal into three categories—with a fair amount of overlap. The first group
are macros which create context. Any operator which causes its arguments to
be evaluated in a new context will probably have to be defined as a macro. The
first two sections describe the two basic types of context, and show how to define
macros for each.

The next three sections describe macros for conditional and repeated evalua-
tion. An operator whose arguments are to be evaluated less than once, or more
than once, must also be defined as a macro. Thereis no sharp distinction between
operators for conditional and repeated evaluation: some of the examplesin this
chapter do both (aswell as binding). Thefinal section explains another similarity
between conditional and repeated evaluation: in some cases, both can be done
with functions.

11.1 Creating Context

Context here has two senses. One sort of context is a lexical environment. The
let special form creates a new lexical environment; the expressions in the body
of alet will be evaluated in an environment which may contain new variables.
If x issetto a at the toplevel, then

(let ((x ’b)) (list x))
will nonethelessreturn (b), because the call to 1ist will be madein an environ-

ment containing a new x, whose valueisb.

143

144 CLASSIC MACROS

(defmacro our-let (binds &body body)
‘((lambda , (mapcar #’(lambda (x)
(if (comsp x) (car x) x))
binds)
,@body)
,@(mapcar #’(lambda (x)
(if (comsp x) (cadr x) nil))
binds)))

Figure 11.1: Macro implementation of 1et.

An operator which isto have abody of expressions must usually be defined as
amacro. Except for caseslike prog1 and progn, the purpose of such an operator
will usually be to cause the body to be evaluated in some new context. A macro
will be needed to wrap context-creating code around the body, even if the context
does not include new lexical variables.

Figure 11.1 shows how let could be defined as a macro on lambda. An
our-let expandsinto afunction application—

(our-let ((x 1) (y 2))
+ xy)

expandsinto
((lambda (x y) (+ x y)) 1 2)

Figure 11.2 contains three new macros which establish lexical environments.
Section 7.5 used when-bind as an example of parameter list destructuring, so this
macro has aready been described on page 94. The more general when-bind*
takes a list of pairs of the form (symbol expression)—the same form as the
first argument to 1let. If any expression returns nil, the whole when-bind*
expression returnsnil. Otherwise its body will be evaluated with each symbol
bound asif by letx*:

> (when-bind* ((x (find-if #’consp ’(a (1 2) b)))
(y (£ind-if #’oddp x)))
(+ y 10))
11

Finally, the macro with-gensyms isitself for use in writing macros. Many
macro definitions begin with the creation of gensyms, sometimes quite a number
of them. The macro with-redraw (page 115) had to create five:

11.1 CREATING CONTEXT

145

(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))
(when ,var
,@body)))

(defmacro when-bind* (binds &body body)
(if (null binds)
‘ (progn ,@body)
‘(let (,(car binds))
(if , (caar binds)
(when-bind* , (cdr binds) ,@body)))))

(defmacro with-gensyms (syms &body body)
‘(let ,(mapcar #’(lambda (s)
“(,s (gensym)))
syms)
,@body))

Figure 11.2: Macros which bind variables.

(defmacro with-redraw ((var objs) &body body)
(let ((gob (gensym))
(x0 (gensym)) (yO (gensym))
(x1 (gensym)) (yl1 (gensym)))
co))

Such definitions are simplified by with-gensyms, which binds a whole list of

variablesto gensyms. With the new macro we would write just:
(defmacro with-redraw ((var objs) &body body)
(with-gensyms (gob x0 yO x1 y1)
L))

This new macro will be used throughout the remaining chapters.

If we want to bind some variables and then, depending on some condition,

evaluate one of a set of expressions, we just use a conditional withinalet:

(let ((sun-place ’park) (rain-place ’library))
(if (sunny)
(visit sun-place)
(visit rain-place)))

146 CLASSIC MACROS

(defmacro condlet (clauses &body body)
(let ((bodfn (gensym))
(vars (mapcar #’(lambda (v) (cons v (gensym)))
(remove-duplicates
(mapcar #’car
(mappend #’cdr clauses))))))
‘(labels ((,bodfn ,(mapcar #’car vars)
,@body))
(cond ,@(mapcar #’(lambda (cl)
(condlet-clause vars cl bodfn))
clauses)))))

(defun condlet-clause (vars cl bodfn)
“(,(car cl) (let ,(mapcar #’cdr vars)
(let ,(condlet-binds vars cl)
(,bodfn ,@(mapcar #’cdr vars))))))

(defun condlet-binds (vars cl)
(mapcar #’(lambda (bindform)
(if (consp bindform)
(cons (cdr (assoc (car bindform) vars))
(cdr bindform))))
(cdr cl1)))

Figure 11.3: Combination of cond and let.

Unfortunately, there is no convenient idiom for the opposite situation, where
we aways want to evaluate the same code, but where the bindings must vary
depending on some condition.

Figure 11.3 contains a macro intended for such situations. As its name
suggests, condlet behaves like the offspring of cond and let. It takes as
arguments a list of binding clauses, followed by a body of code. Each of the
binding clausesis guarded by atest expression; the body of codewill be evaluated
with thebindingsspecified by thefirst binding clausewhosetest expressionreturns
true. Variables which occur in some clauses and not others will be bound tonil
if the successful clause does not specify bindings for them:

11.2 THE with- MACRO 147

> (condlet (((= 1 2) (x (princ ’a)) (y (princ ’b)))
((=11) (y (princ ’c)) (x (princ ’d)))
(t (x (princ ’e)) (z (princ ’£))))
(list x y 2))
CD
(D C NIL)

The definition of condlet can be understood as a generalization of the def-
inition of our-let. The latter makes its body into a function, which is applied
to the results of evaluating the initial-valueforms. A condlet expandsinto code
which defines alocal function with 1abels; within it a cond clause determines
which set of initial-value formswill be evaluated and passed to the function.

Notice that the expander uses mappend instead of mapcan to extract the
variable names from the binding clauses. Thisis because mapcan is destructive,
and as Section 10.3 warned, it is dangerousto modify parameter list structure.

11.2 Thewith- Macro

There is another kind of context besides a lexical environment. In the broader
sense, the context isthe state of theworld, including the values of special variables,
the contents of data structures, and the state of things outside Lisp. Operators
which build this kind of context must be defined as macros too, unless their code
bodies are to be packaged up in closures.

The names of context-building macros often begin with with-. The most
commonly used macro of this type is probably with-open-file. Its body is
evaluated with a newly opened file bound to a user-supplied variable:

(with-open-file (s "dump" :direction :output)
(princ 99 s))

After evaluation of this expression the file "dump" will automatically be closed,
and its contents will be the two characters "99".

Thisoperator clearly hasto be defined asamacro, becauseit bindss. However,
operators which cause forms to be evaluated in a new context must be defined as
macrosanyway. Theignore-errors macro, Nnew in CLTL2, causesits arguments
to be evaluated as if in a progn. If an error occurs at any point, the whole
ignore-errors form simply returnsnil. (Thiswould be useful, for example,
when reading input typed by the user) Though ignore-errors creates no
variables, it still must be defined as a macro, because its arguments are evaluated
in anew context.

Generally, macros which create context will expand into a block of code;
additional expressions may be placed before the body, after it, or both. If code

148 CLASSIC MACROS

occurs after the body, its purpose may be to leave the system in a consistent
state—to clean up something. For example, with-open-file has to close the
fileit opened. In such situations, it is typical to make the context-creating macro
expand into an unwind-protect.

The purpose of unwind-protect is to ensure that certain expressions are
evaluated even if execution is interrupted. It takes one or more arguments, which
are evaluated in order. If al goes smoothly it will return the value of the first
argument, like a progl. The difference is, the remaining arguments will be
evaluated even if an error or throw interrupts evaluation of the first.

> (setq x ’a)

A

> (unwind-protect
(progn (princ "What error?")

(error "This error."))

(setq x ’Db))

What error?

>>Error: This error.

Theunwind-protect form as awholeyields an error. However, after returning
to the toplevel, we notice that the second argument still got eval uated:

> X
B

Because with-open-file expands into an unwind-protect, the file it opens
will usually be closed even if an error occurs during the evaluation of its body.
Context-creating macros are mostly written for specific applications. As an
example, suppose we are writing a program which deals with multiple, remote
databases. The program talks to one database at a time, indicated by the global
variable *db*. Before using adatabase, we haveto lock it, so that no one else can
useit at the same time. When we are finished we have to release the lock. If we
want the value of the query q on the database db, we might say something like:

(let ((temp *dbx))
(setq *db* db)
(lock *dbx)
(progl (eval-query q)
(release *dbx)
(setq *dbx temp)))

With a macro we can hide al this bookkeeping. Figure 11.4 defines a macro
which will allow us to deal with databases at a higher level of abstraction. Using
with-db, wewould say just:

11.2 THE with- MACRO 149

Pure macro:

(defmacro with-db (db &body body)
(let ((temp (gensym)))
“(let ((,temp *db*))
(unwind-protect
(progn
(setq *db* ,db)
(lock *dbx)
,@body)
(progn
(release *dbx)
(setq *db* ,temp))))))

Combination of macro and function:

(defmacro with-db (db &body body)
(let ((gbod (gensym)))
‘(let ((,gbod #’(lambda () ,@body)))
(declare (dynamic-extent ,gbod))
(with-db-fn *db* ,db ,gbod))))

(defun with-db-fn (old-db new-db body)
(unwind-protect

(progn
(setq *db* new-db)
(lock *dbx)
(funcall body))

(progn
(release *dbx)
(setq *db* o0ld-db))))

Figure 11.4: A typical with- macro.

(with-db db
(eval-query q))

Caling with-db is also safer, because it expands into an unwind-protect
instead of asimple prog1.

The two definitions of with-db in Figure 11.4 illustrate two possible ways
to write this kind of macro. Thefirst is a pure macro, the second a combination
of afunction and a macro. The second approach becomes more practical as the

150 CLASSIC MACROS

(defmacro if3 (test t-case nil-case 7-case)
‘(case ,test
((nil) ,nil-case)
(? ,?-case)
(t ,t-case)))

(defmacro nif (expr pos zero neg)
(let ((g (gensym)))
‘(let ((,g ,expr))
(cond ((plusp ,g) ,pos)
((zerop ,g) ,zero)

(t ,negl)))))

Figure 11.5: Macros for conditional evaluation.

desired with- macro growsin complexity.

IncLTL2 Common Lisp, the dynamic-extent declaration allows the closure
containing the body to be allocated more efficiently (in cLTL1 implementations,
it will be ignored). We only need this closure for the duration of the call to
with-db-fn, and the declaration says as much, allowing the compiler to allocate
space for it on the stack. This space will be reclaimed automatically on exit from
the let expression, instead of being reclaimed later by the garbage-collector.

11.3 Conditional Evaluation

Sometimes we want an argument in a macro call to be evaluated only under
certain conditions. Thisis beyond the ability of functions, which always evaluate
all their arguments. Built-in operators like if, and, and cond protect some of
their argumentsfrom eval uation unless other argumentsreturn certain values. For
example, in this expression

(if t
’phew
(/ x 0))

the third argument would cause a division-by-zero error if it were evaluated. But
since only the first two arguments ever will be evaluated, the if as awhole will
always safely return phew.

We can create new operators of this sort by writing macros which expand into
callstothe existing ones. Thetwo macrosin Figure 11.5 aretwo of many possible

11.3 CONDITIONAL EVALUATION 151

variationson if. The definition of i£3 shows how we could define a conditional
for a three-valued logic. Instead of treating nil as false and everything else
as true, this macro considers three categories of truth: true, false, and uncertain,
represented as 7. It might be used asin thefollowing description of afiveyear-old:

(while (not sick)
(if3 (cake-permitted)
(eat-cake)
(throw ’tantrum nil)
(plead-insistently)))

Thenew conditional expandsinto acase. (Thenil key hasto be enclosed within
alist because anil key alone would be ambiguous.) Only one of the last three
argumentswill be evaluated, depending on the value of thefirst.

Thenamenif standsfor “numericif.” Another implementation of this macro
appeared on page 86. It takes a numeric expression as its first argument, and
depending on its sign evaluates one of the remaining three arguments.

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))
(01 -1))
(Z PN

Figure 11.6 contains several more macroswhich take advantage of conditional
evaluation. The macro in is to test efficiently for set membership. When you
want to test whether an object isone of aset of alternatives, you could express the
query as adigunction:

(let ((x (f£00)))
(or (eql x (bar)) (eql x (baz))))

or you could express it in terms of set membership:
(member (foo) (list (bar) (baz)))

The latter is more abstract, but less efficient. The member expression incurs
unnecessary costs from two sources. It conses, because it must assemble the
aternativesinto alist for member to search. And to form the aternativesinto a
list they all have to be evaluated, even though some of the values may never be
needed. If thevalueof (foo) isequal tothevalueof (bar), thenthereisno need
to evaluate (baz) . Whatever its conceptual advantages, thisis not a good way to
use member. We can get the same abstraction more efficiently with a macro: in
combines the abstraction of member with the efficiency of or. The equivalent in
expression

152 CLASSIC MACROS

(defmacro in (obj &rest choices)
(let ((insym (gensym)))
‘(let ((,insym ,obj))
(or ,@(mapcar #’(lambda (c) ‘(eql ,insym ,c))
choices)))))

(defmacro ing (obj &rest args)
‘(in ,obj ,@(mapcar #’(lambda (a)
7,a)
args)))

(defmacro in-if (fn &rest choices)
(let ((fnsym (gensym)))
‘(let ((,fnsym ,fn))
(or ,@(mapcar #’(lambda (c)
“(funcall ,fnsym ,c))
choices)))))

(defmacro >case (expr &rest clauses)
(let ((g (gensym)))
‘(let ((,g ,expr))
(cond ,@(mapcar #’(lambda (cl) (>casex g cl))
clauses)))))

(defun >casex (g cl)
(let ((key (car cl)) (rest (cdr cl)))
(cond ((consp key) ‘((in ,g ,@key) ,Q@rest))
((ing key t otherwise) ‘(t ,@rest))
(t (error "bad >case clause")))))

Figure 11.6: Macros for conditional evaluation.

(in (foo) (bar) (baz))
has the same shape as the member expression, but expandsinto

(let ((#:g25 (f00)))
(or (eql #:g25 (bar))
(eql #:g25 (baz))))

As is often the case, when faced with a choice between a clean idiom and an
efficient one, we go between the horns of the dilemma by writing a macro which

114 CONDITIONAL EVALUATION 153

transforms the former into the latter.
Pronounced “in queue,” inq isaquoting variant of in, as setq used to be of
set. The expression

(ing operator + - *)
expandsinto
(in operator ’+ ’- ’%*)

As member does by default, in and inq use eql to test for equality. When
you want to use some other test—or any other function of one argument—you
can use the more general in-if. What in iSto member, in-if iSto some. The
expression

(member x (list a b) :test #’equal)
can be duplicated by

(in-if #’(lambda (y) (equal x y)) a b)
and

(some #’oddp (list a b))

becomes

(in-if #’oddp a b)

Using acombination of cond and in, we can define a useful variant of case.
TheCommon Lisp case macro assumesthat its keysare constants. Sometimeswe
may want the behavior of a case expression, but with keys which are evaluated.
For such situations we define >case, like case except that the keys guarding
each clause are evaluated before comparison. (The > in the name is intended to
suggest the arrow notation used to represent evaluation.) Because >case USeS in,
it evaluates no more of the keysthan it needsto.

Since keyscan be Lisp expressions, thereisnoway to tell if (x y) isacal or
alist of two keys. To avoid ambiguity, keys (other than t and otherwise) must
always be given in alist, even if there is only one of them. In case expressions,
nil may not appear as the car of a clause on grounds of ambiguity. In a>case
expression, nil is no longer ambiguous as the car of a clause, but it does mean
that the rest of the clause will never be evaluated.

For clarity, the code that generates the expansion of each >case clause is
defined as a separate function, >casex. Noticethat >casex itself uses ing.

154 CLASSIC MACROS

(defmacro while (test &body body)
“(do O
((not ,test))
,@body))

(defmacro till (test &body body)
“(do O
(,test)
,@body))

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))
(,gstop ,stop))
((> ,var ,gstop))
,@body)))

Figure 11.7: Simpleiteration macros.

114 Iteration

Sometimes the trouble with functions is not that their arguments are always
evaluated, but that they are evaluated only once. Because each argument to a
function will be evaluated exactly once, if we want to define an operator which
takes some body of expressions and iterates through them, we will have to define
it asamacro.

The simplest example would be a macro which evaluated its arguments in
sequence forever:

(defmacro forever (&body body)
“(do O
(nil)
,@body))

Thisisjust what the built-in Loop macro does if you giveit no loop keywords. It
might seem that there is not much future (or too much future) in looping forever.
But combined with block and return-from, this kind of macro becomes the
most natural way to expressloopswhere termination is always in the nature of an
emergency.

Some of the simplest macros for iteration are shown in Figure 11.7. We
have already seen while (page 91), whose body will be evaluated while a test

114 ITERATION 155

expression returns true. Its converseis till, which does the same while a test
expression returns false. Finally for, also seen before (page 129), iterates for a
range of numbers.

By defining these macros to expand into dos, we enable the use of go and
returnwithintheir bodies. Asdo inheritstheserightsfromblock and tagbody,
while, till, and for inherit them from do. As explained on page 131, thenil
tag of the implicit block around do will be captured by the macros defined in
Figure11.7. Thisismoreof afeaturethan abug, but it should at |east be mentioned
explicitly.

Macros are indispensable when we need to define more powerful iteration
constructs. Figure 11.8 contains two generalizations of dolist; both evaluate
their body with a tuple of variables bound to successive subsequences of alist.
For example, given two parameters, do-tuples/o will iterate by pairs:

> (do-tuples/o (x y) ’(a b c d)
(princ (list x y)))

(A B)(B C)(C D)

NIL

Given the same arguments, do-tuples/c will do the same thing, then wrap
around to the front of thelist:

> (do-tuples/c (x y) ’(a b c d)
(princ (list x y)))

(A BB C(C DDA

NIL

Both macros returnnil, unless an explicit return occurs within the body.

Thiskind of iterationis often needed in programswhich deal with some notion
of a path. The suffixes /o and /¢ are intended to suggest that the two versions
traverse open and closed paths, respectively. For example, if points isalist of
pointsand (drawline X Yy) drawsthelinebetween x andy, thento draw the path
from the first point to the last we write.

(do-tuples/o (x y) points (drawline x y))

wheress, if points isalist of the vertices of a polygon, to draw its perimeter we
write

(do-tuples/c (x y) points (drawline x y))

The list of parameters given as the first argument can be any length, and
iteration will proceed by tuples of that length. If just one parameter is given, both

156 CLASSIC MACROS

(defmacro do-tuples/o (parms source &body body)
(if parms
(let ((src (gensym)))
“(prog ((,src ,source))
(mapc #’(lambda ,parms ,@body)
,@(map0-n #’(lambda (n)
‘(nthcdr ,n ,src))
(1- (length parms))))))))

(defmacro do-tuples/c (parms source &body body)
(if parms
(with-gensyms (src rest bodfn)
(let ((len (length parms)))
‘(let ((,src ,source))
(when (nthcdr ,(1- len) ,src)
(labels ((,bodfn ,parms ,@body))
(do ((,rest ,src (cdr ,rest)))
((not (nthcdr ,(1- len) ,rest))
,@(mapcar #’(lambda (args)
“(,bodfn ,@args))
(dt-args len rest src))

nil)
(,bodfn ,@(mapl-n #’(lambda (n)
‘(nth ,(1- n)
,rest))
len))))))))))

(defun dt-args (len rest src)
(mapO-n #’(lambda (m)
(mapl-n #’(lambda (n)
(let ((x (+ m n)))
(if (>= x len)
‘(nth ,(- x len) ,src)
‘(nth ,(1- x) ,rest))))
len))
(- len 2)))

Figure 11.8: Macrosfor iteration by subsequences.

114 ITERATION 157

(do-tuples/c (x y z) ’(a b c d)
(princ (list x y z)))

expandsinto:

(let ((#:g2 ’(a b c d)))
(when (nthcdr 2 #:g2)
(labels ((#:g4 (x y 2)
(princ (list x y 2))))
(do ((#:g3 #:g2 (cdr #:g3)))
((not (nthcdr 2 #:g3))

(#:g4 (nth 0O #:g3)
(nth 1 #:g3)
(nth 0 #:g2))
(#:g4 (nth 1 #:g3)
(nth 0 #:g2)
(nth 1 #:g2))
nil)
(#:g4 (nth 0 #:g3)
(nth 1 #:g3)

(nth 2 #:g3))))))

Figure 11.9: Expansion of acall to do-tuples/c.

degenerateto dolist:

> (do-tuples/o (x) ’(a b ¢) (princ x))
ABC
NIL
> (do-tuples/c (x) ’(a b ¢) (princ x))
ABC
NIL

The definition of do-tuples/c is more complex than that of do-tuples/o,
because it has to wrap around on reaching the end of the list. If there are n
parameters, do-tuples/c must do n—1 more iterations before returning:

> (do-tuples/c (x y z) ’(a b c d)
(princ (list x y 2)))

(ABC)(BCD)(CDADAB)

NIL

158 CLASSIC MACROS

> (do-tuples/c (w x y z) ’(a b c d)

(princ (list w x y 2)))
(ABCD)BCDACDABYDABOC
NIL

The expansion of the former call to do-tuples/c isshownin Figure 11.9. The
hard part to generate is the sequence of calls representing the wrap around to the
front of thelist. These calls(in this case, two of them) are generated by dt-args.

11.5 Iteration with Multiple Values

The built-in do macros have been around longer than multiple return values.
Fortunately do can evolve to suit the new situation, because the evolution of Lisp
isin the hands of the programmer. Figure 11.10 containsa version of do* adapted
for multiple values. With mvdox*, each of the initial clauses can bind more than
onevariable:

> (mvdo*x ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))
((> x B) (list x y z))
(princ (list x y 2)))
(100(202)(323)(4 34) (5 45
(6 5 6)

This kind of iteration is useful, for example, in interactive graphics programs,
which often have to deal with multiple quantities like coordinates and regions.
Suppose that we want to write a simple interactive game, in which the object
isto avoid being squashed between two pursuing objects. If the two pursuersboth
hit you at the same time, you losg; if they crash into one another first, you win.
Figure 11.11 shows how the main loop of this game could bewritten usingmvdox.
Itisalso possibleto write an mvdo, which bindsitslocal variablesin parallel:

> (mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))
((> x 5) (list x y z))
(princ (list x y 2)))
(10020 1)(312)(423)(5 34
(6 4 5)

The need for psetq in defining do was described on page 96. To define mvdo,
we need a multiple-value version of psetq. Since Common Lisp doesn’'t have
one, we have to write it ourselves, asin Figure 11.12. The new macro works as
follows:

115 ITERATION WITH MULTIPLE VALUES 159

(defmacro mvdo* (parm-cl test-cl &body body)
(mvdo-gen parm-cl parm-cl test-cl body))

(defun mvdo-gen (binds rebinds test body)
(if (null binds)
(let ((label (gensym)))
‘(prog nil
,label
(if , (car test)
(return (progn ,@(cdr test))))
,@body
,@(mvdo-rebind-gen rebinds)
(go ,label)))
(let ((rec (mvdo-gen (cdr binds) rebinds test body)))
(let ((var/s (caar binds)) (expr (cadar binds)))
(if (atom var/s)
‘(let ((,var/s ,expr)) ,rec)
‘(multiple-value-bind ,var/s ,expr ,rec))))))

(defun mvdo-rebind-gen (rebinds)
(cond ((null rebinds) nil)
((< (length (car rebinds)) 3)
(mvdo-rebind-gen (cdr rebinds)))
(t
(cons (1list (if (atom (caar rebinds))
’setq
’multiple-value-setq)
(caar rebinds)
(third (car rebinds)))
(mvdo-rebind-gen (cdr rebinds))))))

Figure 11.10: Multiple value binding version of dox.

> (let (w0 (x1) (y2) (z3))
(mvpsetq (w x) (values ’a ’b) (y z) (values w x))
(list w x y 2))

(ABO 1)

The definition of mvpsetq relies on three utility functions: mklist (page 45),
group (page 47), and shuffle, defined here, which interleavestwo lists:

160 CLASSIC MACROS

(mvdox (((px py) (pos player) (move player mx my))

((x1 y1) (pos objl) (move objl (- px x1)

(- py yD)
((x2 y2) (pos obj2) (move obj2 (- px x2)

(- py y2)))
((mx my) (mouse-vector) (mouse-vector))
(win nil (touch objl obj2))
(lose nil (and (touch objl player)

(touch obj2 player))))
((or win lose) (if win ’win ’lose))
(clear)
(draw obj1)
(draw obj2)
(draw player))

(pos obj) returns two values x,y representing the position of obj. Initialy,
the three objects have random positions.

(move obj dx dy) movesthe object obj depending on its type and the vector
(dx,dy). Returnstwo valuesx,y indicating the new position.

(mouse-vector) returns two values dx, dy indicating the current movement
of the mouse.

(touch obj1 obj2) returnstrueif obj1 and obj2 are touching.
(clear) clearsthe gameregion.

(draw obj) drawsobj at its current position.

Figure11.11: A game of squash.

> (shuffle ’(a b c) (1 2 3 4))
(A1B2C34

With mvpsetq, we can definemvdo asin Figure 11.13. Like condlet, this
macro uses mappend instead of mapcar to avoid modifying the original macro
cal. Themappend-mklist idiom flattens atree by one level:

> (mappend #’mklist ’((a b c) d (e (£ g) h) ((i)) j))
(ABCDE(FG H(@O D

11.6 NEED FOR MACROS 161

(defmacro mvpsetq (&rest args)
(let* ((pairs (group args 2))
(syms (mapcar #’(lambda (p)
(mapcar #’(lambda (x) (gensym))
(mklist (car p))))
pairs)))
(labels ((rec (ps ss)
(if (null ps)
‘(setq
,@(mapcan #’(lambda (p s)
(shuffle (mklist (car p))
s))
pairs syms))
(let ((body (rec (cdr ps) (cdr ss))))
(let ((var/s (caar ps))
(expr (cadar ps)))
(if (consp var/s)
‘(multiple-value-bind , (car ss)

, €Xpr
,body)

“(let ((,@(car ss) ,expr))
,body)))))))

(rec pairs syms))))

(defun shuffle (x y)
(cond ((null x) y)
((null y) x)
(t (list* (car x) (car y)
(shuffle (cdr x) (cdr y))))))

Figure 11.12: Multiple value version of psetgq.

To help in understanding this rather large macro, Figure 11.14 contains a sample
expansion.

11.6 Need for Macros

Macros aren’t the only way to protect arguments against evaluation. Another isto
wrap them in closures. Conditional and repested evaluation are similar because
neither problem inherently requiresmacros. For example, we could writeaversion

162 CLASSIC MACROS

(defmacro mvdo (binds (test &rest result) &body body)
(let ((label (gensym))
(temps (mapcar #’(lambda (b)
(if (listp (car b))
(mapcar #’(lambda (x)
(gensym))
(car b))
(gensym)))
binds)))
‘(let ,(mappend #’mklist temps)
(mvpsetq ,@(mapcan #’(lambda (b var)
(list var (cadr b)))
binds
temps))
(prog , (mapcar #’(lambda (b var) (list b var))
(mappend #’mklist (mapcar #’car binds))
(mappend #’mklist temps))
,label

(if ,test
(return (progn ,Qresult)))
,@body
(mvpsetq ,@(mapcan #’(lambda (b)
(if (third b)
(1ist (car b)
(third b))))
binds))
(go ,label)))))

Figure 11.13: Multiple value binding version of do.

of if asafunction:

(defun fnif (test then &optional else)
(if test
(funcall then)
(if else (funcall else))))

We would protect the then and else arguments by expressing them as closures,
so instead of

(if (rich) (go-sailing) (rob-bank))

11.6 NEED FOR MACROS 163

(mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))
((> x B) (list x y z))
(princ (list x y 2)))

expandsinto:

(let (#:g2 #:g3 #:g4)
(mvpsetq #:g2 1
(#:g3 #:g4) (values 0 0))
(prog ((x #:g2) (y #:83) (z #:g4))
#:g1
(if (> x B)
(return (progn (list x y z))))
(princ (list x y 2))
(mvpsetq x (1+ x)
(y z) (values z x))
(go #:g1)))

Figure 11.14: Expansion of acall to mvdo.

we would say

(fnif (rich)
#’ (lambda () (go-sailing))
#’ (lambda () (rob-bank)))

If all wewant is conditional evaluation, macros aren’t absolutely necessary. They
just make programs cleaner. However, macros are necessary when we want to
take apart argument forms, or bind variables passed as arguments.

The same appliesto macrosfor iteration. Although macros offer the only way
to define an iteration construct which can be followed by a body of expressions,
it is possible to do iteration with functions, so long as the body of the loop is
packaged up in afunction itself.! The built-in function mapc, for example, is the
functional counterpart of dolist. The expression

(dolist (b bananas)
(peel b)
(eat b))

11t's not impossible to write an iteration function which doesn’'t need its argument wrapped up in
afunction. We could write a function that called eval on expressions passed to it as arguments. For
an explanation of why it's usually bad to call eval, see page 278.

164 CLASSIC MACROS

has the same side-effects as

(mapc #’(lambda (b)

(peel b)
(eat b))
bananas)

(though the former returnsnil and the latter returnsthe list bananas). We could
likewise implement forever asafunction,

(defun forever (fn)
(do O
(nil)
(funcall fn)))

if we werewilling to passit a closure instead of a body of expressions.

However, iteration constructs usually want to do more than just iterate, as
forever does. they usualy want to do a combination of binding and iteration.
With afunction, theprospectsfor bindingarelimited. If youwant to bind variables
to successive elements of lists, you can use one of the mapping functions. But
if the requirements get much more complicated than that, you'll have to write a
macro.

12

Generalized Variables

Chapter 8 mentioned that one of the advantages of macros is their ability to
transform their arguments. One macro of this sort is setf. This chapter looks at
theimplications of setf, and then shows some examples of macroswhich can be
built upon it.

Writing correct macros on setf is surprisingly difficult. To introduce the
topic, the first section will provide a simple example which is slightly incorrect.
The next section will explain what's wrong with this macro, and show how to fix
it. The third and fourth sections present examples of utilities built on setf, and
the final section explains how to define your own setf inversions.

12.1 The Concept

The built-in macro setf isageneralization of setq. Thefirst argument to setf
can be acall instead of just avariable:

> (setq 1st ’(a b ¢))
(A B C)

> (setf (car 1lst) 480)
480

> 1st

(480 B C)

In general (setf X y) can be understood as saying “see to it that x evaluates to
y” Asamacro, setf canlook inside its argumentsto see what needs to be done
to make such a statement true. If the first argument (after macroexpansion) is a

165

166 GENERALIZED VARIABLES

symbol, the setf just expandsinto asetq. But if the first argument is a query,
the setf expands into the corresponding assertion. Since the second argument is
a constant, the preceding example could expand into:

(progn (rplaca lst 480) 480)

This transformation from query to assertion is called inversion. All the most
frequently used Common Lisp access functions have predefined inversions, in-
cluding car, cdr, nth, aref, get, gethash, and the access functions created by
defstruct. (Thefull listisincLTL2, p. 125.)

An expression which can serve as the first argument to setf is caled a
generalized variable. Generalized variables have turned out to be a powerful
abstraction. A macro call resembles a generalized variable in that any macro call
which expandsinto an invertible reference will itself be invertible.

When we al so write our own macroson top of setf, the combination leadsto
noticeably cleaner programs. One of the macros we can define on top of setf is
toggle}

(defmacro toggle (obj) ; wrong
‘(setf ,obj (mot ,0bj)))

which toggles the value of a generalized variable:

> (let ((1st ’(a b ¢)))
(toggle (car 1lst))
1st)

(NIL B C)

Now consider the following sample application. Suppose someone—a soap-
operawriter, energetic busybody, or party official—wants to maintain a database
of all the relations between the inhabitants of a small town. Among the tables
required is one which records people'sfriends:

(defvar *friends* (make-hash-table))

The entries in this hash-table are themselves hash-tables, in which names of
potential friends are mappedto t or nil:

(setf (gethash ’mary *friends*) (make-hash-table))
To make John the friend of Mary, we would say:

(setf (gethash ’john (gethash ’mary *friendsx)) t)

1This definition is not correct, as the following section will explain.

12.2 THE MULTIPLE EVALUATION PROBLEM 167

The town is divided between two factions. As factions are wont to do, each
says “anyone who is not with us is against us,” so everyone in town has been
compelled to join one side or the other. Thus when someone switches sides, all
his friends become enemies and all his enemies become friends.

To toggle whether x is the friend of y using only built-in operators, we have

to say:

(setf (gethash x (gethash y *friends*))
(not (gethash x (gethash y *friends*))))

which is a rather complicated expression, though much simpler than it would
have been without setf. If we had defined an access macro upon the database as
follows:

(defmacro friend-of (p q)
‘(gethash ,p (gethash ,q *friendsx*)))

then between thismacro and toggle, we would have been better equipped to deal
with changes to the database. The previous update could have been expressed as
simply:

(toggle (friend-of x y))

Generalized variables are like a health food that tastes good. They yield
programs which are virtuously modular, and yet beautifully elegant. If you
provide access to your data structures through macros or invertible functions,
other modules can use setf to modify your data structures without having to
know the details of their representation.

12.2 The Multiple Evaluation Problem
The previous section warned that our initial definition of toggle was incorrect:

(defmacro toggle (obj) ; wrong
‘(setf ,obj (mot ,0bj)))

Itissubject to the problem described in Section 10.1, multipleevaluation. Trouble
arises when its argument has side-effects. For example, if 1st isalist of objects,
and we write:

(toggle (nth (incf i) 1st))

then we would expect to be toggling the (i+1)th element. However, with the
current definition of toggle thiscall will expand into:

168 GENERALIZED VARIABLES
(setf (nth (incf i) 1st)
(not (nth (incf i) 1st)))

This increments i twice, and sets the (i+1)th element to the opposite of the
(1+2)th element. So in thisexample

> (let ((Ist ’(t nil t))

(i -1))
(toggle (nth (incf i) 1st))
1st)
(T NIL T)

thecall to toggle seemsto have no effect.

It is not enough just to take the expression given as an argument to toggle
andinsertit asthefirst argumentto setf. We haveto look inside the expressionto
seewhat it does: if it contains subforms, we haveto break them apart and eval uate
them separately, in case they have side effects. In generd, thisis a complicated
business.

Tomakeit easier, Common Lisp providesamacro which automatically defines
alimited class of macroson setf. Thismacroiscalled define-modify-macro,
and it takes three arguments: the name of the macro, its additional parameters
(after the generalized variable), and the name of the function? which yields the
new value for the generalized variable.

Using define-modify-macro, we could define toggle asfollows:

(define-modify-macro toggle () not)

Paraphrased, this says “to evaluate an expression of the form (toggle place),
find the location specified by place, and if the value stored thereis val, replace it
withthevalue of (not val).” Hereisthe new macro used in the same example:

> (let ((1st ’(t nil t))
(1 -1))
(toggle (nth (incf i) 1st))
1st)
(NIL NIL T)

This version gives the correct result, but it could be made more general. Since
setf and setq can take an arbitrary number of arguments, so should toggle.
We can add this capability by defining another macro on top of the modify-macro,
asin Figure12.1.

2A function name in the general sense: either 1+ or (lambda (x) (+ x 1)).

12.3 NEW UTILITIES 169

(defmacro allf (val &rest args)
(with-gensyms (gval)
‘(let ((,gval ,val))
(setf ,@(mapcan #’(lambda (a) (list a gval))
args)))))

(defmacro nilf (&rest args) ‘(allf nil ,@args))
(defmacro tf (&rest args) ‘(allf t ,@args))
(defmacro toggle (&rest args)
‘ (progn
,@(mapcar #’(lambda (a) ‘(toggle2 ,a))
args)))

(define-modify-macro toggle2 () not)

Figure 12.1: Macros which operate on generalized variables.

12.3 New Utilities

This section gives some examples of new utilities which operate on generalized
variables. They must be macrosin order to pass their argumentsintact to setf.

Figure 12.1 shows four new macros built upon setf. Thefirst, allf, isfor
setting a number of generalized variables to the same value. Upon it are built
nilf and tf, which set their argumentstonil and t, respectively. These macros
are simple, but they make a difference.

Like setq, setf can take multiple arguments—alternating variables and val-
ues:

(setf x 1y 2)

So can these new utilities, but you can skip giving half the arguments. If you want
toinitialize anumber of variablestonil, instead of

(setf x nil y nil z nil)
you can say just

(nilf x y z)

170 GENERALIZED VARIABLES

(define-modify-macro concf (obj) nconc)

(define-modify-macro conclf (obj)
(lambda (place obj)
(nconc place (list obj))))

(define-modify-macro concnew (obj &rest args)
(lambda (place obj &rest args)
(unless (apply #’member obj place args)
(nconc place (list obj)))))

Figure 12.2: List operations on generalized variables.

The last macro, toggle, was described in the previous section: it islike nilf,
but gives each of its arguments the opposite truth value.

Thesefour macrosillustrate animportant point about operatorsfor assignment.
Evenif we only intend to use an operator on ordinary variables, it's worth writing
it to expand into asetf instead of asetq. If thefirst argument is a symbol, the
setf will expand into asetq anyway. Since we can have the generality of setf
at no extracost, it israrely desirableto use setq in a macroexpansion.

Figure 12.2 containsthree macrosfor destructively modifying theends of lists.
Section 3.1 mentioned that it is unsafe to rely on

(nconc x y)
for side-effects, and that one must write instead
(setq x (nconc x y))

Thisidiom is embodied in concf. The more specialized conc1f and concnew
arelike push and pushnew for the other end of thelist: conc1f addsone element
to the end of alist, and concnew does the same, but only if the element is not
aready a member.

Section 2.2 mentioned that the name of afunction can be alambda-expression
as well as asymbol. Thusit is fine to give a whole lambda-expression as the
third argument to def ine-modify-macro, asin the definition of conc1f. Using
conc1 from page 45, this macro could also have been written:

(define-modify-macro conclf (obj) concl)

The macros in Figure 12.2 should be used with one reservation. If you're
planning to build alist by adding elements to the end, it may be preferable to use

12.4 MORE COMPLEX UTILITIES 171

push, and then nreverse thelist. It is cheaper to do something to the front of a
list than to the end, because to do something to the end you have to get therefirst.
It is probably to encourage efficient programming that Common Lisp has many
operatorsfor the former and few for the latter.

124 More Complex Utilities

Not all macroson setf can be defined with def ine-modify-macro. SUppose,
for example, that wewant to defineamacro _f for applying afunction destructively
to ageneralized variable. The built-in macro incf isan abbreviationfor setf of
+. Instead of

(setf x (+ x y))
we say just
(incf x y)

The new _f isto be a generalization of thisidea: while incf expandsinto acall
to +, _f will expand into a call to the operator given as the first argument. For
example, in the definition of scale-objs on page 115, we had to write

(setf (obj-dx o) (* (obj-dx o) factor))
With _f thiswill become

(_f * (obj-dx o) factor)

The incorrect way to write £ would be:

(defmacro _f (op place &rest args) ; wrong
‘(setf ,place (,op ,place ,Qargs)))

Unfortunately, we can’t defineacorrect £ withdef ine-modify-macro, because
the operator to be applied to the generalized variableis given as an argument.

More complex macros like this one have to be written by hand. To make such
macros easier to write, Common Lisp providesthe function get-setf-method,
which takes a generalized variable and returns all the information necessary to
retrieveor setitsvalue. Wewill seehow to usethisinformation by hand-generating
an expansion for:

(incf (aref a (incf i)))

When we call get-setf-method on the generalized variable, we get five
values intended for use as ingredients in the macroexpansion:

172 GENERALIZED VARIABLES

> (get-setf-method ’(aref a (incf 1i)))
(#:G4 #:G5)

(A (INCF I))

(#:G8)

(SYSTEM: SET-AREF #:G6 #:G4 #:G5)

(AREF #:G4 #:G5)

Thefirst two values are lists of temporary variables and the values that should be
assigned to them. So we can begin the expansion with:

(let* ((#:g4 a)
(#:g5 (incf 1))
L)

These bindings should be created in alet* because in the general case the value
forms can refer to earlier variables. The third® and fifth values are another tem-
porary variable and the form that will return the original value of the generalized
variable. Since we want to add 1 to this value, we wrap the latter in acall to 1+:

(let* ((#:g4 a)
(#:g5 (incf 1))
(#:g6 (1+ (aref #:g4 #:g5))))
.

Finally, the fourth value returned by get-setf-method is the assignment that
must be made within the scope of the new bindings:

(let* ((#:g4 a)
(#:g5 (incf 1))
(#:g6 (1+ (aref #:g4 #:g5))))
(system:set-aref #:g6 #:g4 #:g5))

More often than not, this form will refer to internal functions which are not part
of Common Lisp. Usually setf masks the presence of these functions, but they
have to exist somewhere. Everything about them is implementation-dependent,
so portable code should use forms returned by get-setf-method, rather than
referring directly to functionslike system: set-aref.

Now toimplement _f wewrite amacrowhich doesalmost exactly what we did
when expanding incf by hand. The only differenceis that, instead of wrapping
thelast forminthe let* in acal to 1+, we wrap it in an expression made from
theargumentsto _f. The definition of _f isshown in Figure 12.3.

3The third value is currently always alist of one element. It is returned as a list to provide the (so
far unconsummated) potential to store multiple values in generalized variables.

12.4 MORE COMPLEX UTILITIES

173

(defmacro _f (op place &rest args)
(multiple-value-bind (vars forms var set access)
(get-setf-method place)
‘(let* (,0@(mapcar #’list vars forms)
(, (car var) (,op ,access ,Qargs)))
,set)))

(defmacro pull (obj place &rest args)
(multiple-value-bind (vars forms var set access)
(get-setf-method place)
(let ((g (gensym)))
‘(letx ((,g ,obj)
,@(mapcar #’list vars forms)
(, (car var) (delete ,g ,access ,Qargs)))

,set))))

(defmacro pull-if (test place &rest args)
(multiple-value-bind (vars forms var set access)
(get-setf-method place)
(let ((g (gensym)))
“(let* ((,g ,test)
,@(mapcar #’list vars forms)
(, (car var) (delete-if ,g ,access ,Qargs)))

,set))))

(defmacro popn (n place)
(multiple-value-bind (vars forms var set access)
(get-setf-method place)
(with-gensyms (gn glst)
“(let* ((,gn ,n)

,@(mapcar #’list vars forms)

(,glst ,access)

(, (car var) (anthcdr ,gn ,glst)))

(progl (subseq ,glst O ,gn)
,set)))))

Figure 12.3: More complex macroson setf.

174 GENERALIZED VARIABLES

This utility is quite a useful one. Now that we have it, for example, we can
easily replace any named function with amemoized (Section 5.3) equivalent. 4 To
memoize foo we would say:

(_f memoize (symbol-function ’fo0))

Having _f also makes it easy to define other macros on setf. For example,
we could now define conc1f (Figure 12.2) as:

(defmacro conclf (lst obj)
¢(_f nconc ,lst (list ,obj)))

Figure 12.3 contains some other useful macros on setf. The next, pull,
is intended as a complement to the built-in pushnew. The pair are like more
discerning versions of push and pop; pushnew pushes a new element onto alist
if it is not already a member, and pull destructively removes selected elements
fromalist. The&rest parameter in pull’sdefinition makespull ableto accept
al the same keyword parametersasdelete:

> (setq x (1 2 (a b) 3))

(12 (AB) 3

> (pull 2 x)

(1 (AB) 3

> (pull ’(a b) x :test #’equal)
(13

> x

(13

You could almost think of this macro asif it were defined:

(defmacro pull (obj seq &rest args) ; wrong
‘(setf ,seq (delete ,obj ,seq ,Qargs)))

thoughif it really were defined that way, it would be subject to problemswith both
order and number of evaluations. We could define a version of pull asasimple
modify-macro:

(define-modify-macro pull (obj &rest args)
(lambda (seq obj &rest args)
(apply #’delete obj seq args)))

4Built-in functions should not be memoized in this way, though. Common Lisp forbids the
redefinition of built-in functions.

12.4 MORE COMPLEX UTILITIES 175

but since modify-macrosmust take the generalized variable astheir first argument,
we would have to give the first two arguments in reverse order, which would be
lessintuitive.

The more general pull-if takes an initial function argument, and expands
intoadelete-if instead of adelete:

> (let ((1st (1 2 3 4 5 6)))
(pull-if #’oddp 1st)
1st)

(2 4 6)

Thesetwo macrosillustrate another general point. If the underlying function takes
optional arguments, so should the macro built upon it. Both pull and pull-if
pass optional arguments on to their deletes.

The final macro in Figure 12.3, popn, is a generalization of pop. Instead of
popping just one element of alist, it pops and returns a subsequence of arbitrary
length:

> (setgx ’(abcde £f))
(ALBCDEF)

> (popn 3 x)

(A BC)

> X

(D EF)

Figure 12.4 containsamacrowhich sortsitsarguments. If x andy arevariables
and we want to ensure that x does not have the lower of the two values, we can
write:

(if (> y x) (rotatef x y))

But if we want to do this for three or more variables, the code required grows
rapidly. Instead of writing it by hand, we can have sortf write it for us. This
macro takes a comparison operator plus any number of generalized variables, and
swaps their values until they are in the order dictated by the operator. In the
simplest case, the arguments could be ordinary variables:

> (setqx 1y 2z 3)
3
> (sortf > x y 2z)
3
>

(list x y 2)
(32 1)

176 GENERALIZED VARIABLES

(defmacro sortf (op &rest places)
(let* ((meths (mapcar #’(lambda (p)
(multiple-value-list
(get-setf-method p)))
places))
(temps (apply #’append (mapcar #’third meths))))
‘(let* ,(mapcar #’list
(mapcan #’ (lambda (m)
(append (first m)
(third m)))
meths)
(mapcan #’ (lambda (m)
(append (second m)
(1ist (fifth m))))
meths))
,@(mapcon #’(lambda (rest)
(mapcar
#’ (lambda (arg)
‘(unless (,op ,(car rest) ,arg)
(rotatef ,(car rest) ,arg)))
(cdr rest)))
temps)
,@(mapcar #’fourth meths))))

Figure 12.4: A macro which sortsits arguments.

Ingeneral, they could be any invertibleexpressions. Suppose cake isaninvertible
function which returns someone's piece of cake, and bigger is a comparison
function defined on pieces of cake. If we want to enforce the rule that the cake
of moe isno lessthan the cake of larry, whichisno less than that of curly, we
write:

(sortf bigger (cake ’moe) (cake ’larry) (cake ’curly))

The definition of sortf is similar in outline to that of f. It begins with a
let* inwhich thetemporary variablesreturned by get-setf-method are bound
to theinitial values of the generalized variables. The core of sortf isthe central
mapcon expression, which generates code to sort these temporary variables. The
code generated by this portion of the macro grows exponentially with the number
of arguments. After sorting, the generalized variables are reassigned using the

12.4 MORE COMPLEX UTILITIES 177

(sortf > x (aref ar (incf i)) (car 1lst))

expands (in one possible implementation) into:

(let* ((#:g1 x)
(#:g4 ar)
(#:g3 (incf 1))
(#:22 (aref #:g4 #:g3))
(#:g6 1st)
(#:g5 (car #:g6)))
(unless (> #:g1 #:g2)
(rotatef #:gl #:g2))
(unless (> #:gl1 #:g5)
(rotatef #:gl1 #:g5))
(unless (> #:g2 #:g5)
(rotatef #:g2 #:g5))
(setq x #:g1)
(system:set-aref #:g2 #:g4 #:g3)
(system:set-car #:g6 #:g5))

Figure 12.5: Expansion of acall to sortf.

forms returned by get-setf-method. The agorithm used isthe O(nz) bubble-
sort, but this macro is not intended to be called with huge numbers of arguments.

Figure 12.5 shows the expansion of a call to sortf. Intheinitial let*, the
arguments and their subforms are carefully evaluated in left-to-right order. Then
appear three expressions which compare and possibly swap the values of the
temporary variables: thefirst is compared to the second, then thefirst to the third,
then the second to the third. Finally the the generalized variables are reassigned
|eft-to-right. Although the issuerarely arises, macro arguments should usually be
assigned left-to-right, aswell as being evaluated in this order.

Operators like £ and sortf bear a certain resemblance to functions that
take functional arguments. It should be understood that they are something quite
different. A function like £ind-if takes afunction and calls it; a macro like £
takes a name, and makes it the car of an expression. Both f and sortf could
have been written to take functional arguments. For example, _f could have been
written:

178 GENERALIZED VARIABLES

(defmacro _f (op place &rest args)
(let ((g (gensym)))
(multiple-value-bind (vars forms var set access)
(get-setf-method place)
‘(letx ((,g ,op)
,@(mapcar #’list vars forms)
(, (car var) (funcall ,g ,access ,Qargs)))

,set))))

andcaled (£ #’+ x 1). Buttheoriginal versionof _f can do anythingthisone
could, and since it dealsin names, it can also take the name of amacro or special
form. Aswell as+, you could call, for example, nif (page 150):

> (let ((x 2))
(_f nif x ’p ’z ’n)

x)

12,5 Defining Inversions

Section 12.1 explained that any macro cal which expands into an invertible
reference will itself be invertible. You don’t have to define operators as macros
just to make them invertible, though. By using defsetf you cantell Lisp how to
invert any function or macro call.

This macro can be used in two ways. In the smplest case, its arguments are
two symbols:

(defsetf symbol-value set)

In the more complicated form, acall to defsetf islikeacall to defmacro, with
an additional parameter for the updated value form. For example, this would
define apossible inversion for car:

(defsetf car (1st) (new-car)
‘(progn (rplaca ,lst ,new-car)
,new-car))

There is one important difference between defmacro and defsetf: the latter
automatically creates gensymsfor its arguments. With the definition given above,
(setf (car x) y) would expandinto:

(let* ((#:g2 x)
(#:81 y))

(progn (rplaca #:g2 #:g1)
#:g1))

12.5 DEFINING INVERSIONS 179

(defvar *cache* (make-hash-table))

(defun retrieve (key)
(multiple-value-bind (x y) (gethash key *cachex)
(if y
(values x y)
(cdr (assoc key *world*)))))

(defsetf retrieve (key) (val)
‘(setf (gethash ,key *cachex*) ,val))

Figure 12.6: An asymmetric inversion.

Thus we can write defsetf expanders without having to worry about variable
capture, or number or order of evaluations.

In cLTL2 Common Lisp, it is possible to define setf inversions directly with
defun, S0 the previous example could & so be written:

(defun (setf car) (new-car lst)
(rplaca 1lst new-car)
new-car)

The updated value should be the first parameter in such a function. It is also
conventional to return this value as the value of the function.

The examples so far have suggested that generalized variables are supposed
to refer to a place in a data structure. The villain carries his hostage down to
the dungeon, and the rescuing hero carries her back up again; they both follow
the same path, but in different directions. It's not surprising if people have the
impression that setf must work this way, because all the predefined inversions
seem to be of this form; indeed, place isthe conventiona name for a parameter
which isto be inverted.

In principle, setf is more general: an access form and its inversion need not
even operate on the same data structure. Suppose that in some application we
want to cache database updates. This could be necessary, for example, if it were
not efficient to do real updates on the fly, or if all the updates had to be verified
for consistency before committing to them.

Suppose that *worldx is the actual database. For simplicity, we will make it
an assoc-list whose elements are of the form (key . val). Figure 12.6 shows a
lookup function called retrieve. If *world*is

((a. 2) (b . 16) (c . 50) (d. 20 (f . 12))

180 GENERALIZED VARIABLES

then

> (retrieve ’c)
50

Unlikeacall to car, acall to retrieve does not refer to aspecific placein adata
structure. Thereturn value could comefrom one of two places. Andtheinversion
of retrieve, also defined in Figure 12.6, only refers to one of them:

> (setf (retrieve ’n) 77)
77

> (retrieve ’n)

77

T

This lookup returns a second value of t, indicating that the answer was found in
the cache.

Likemacrosthemselves, generalized variablesarean abstraction of remarkable
power. Thereis probably more to be discovered here. Certainly individual users
are likely to discover ways in which the use of generalized variables could lead
to more elegant or more powerful programs. But it may also be possible to
use setf inversion in new ways, or to discover other classes of similarly useful

o transformations.

13

Computation at Compile-Time

The preceding chapters described several types of operators which have to be
implemented by macros. This one describes a class of problems which could
be solved by functions, but where macros are more efficient. Section 8.2 listed
the pros and cons of using macros in a given situation. Among the pros was
“computation at compile-time” By defining an operator as a macro, you can
sometimes make it do some of its work when it is expanded. This chapter looks
at macros which take advantage of this possihility.

13.1 New Utilities

Section 8.2 raised the possibility of using macrosto shift computation to compile-
time. There we had as an example the macro avg, which returns the average of
its arguments:

> (avg pi 4 5)
4.047...

Figure 13.1 shows avg defined first as a function and then as amacro. When avg
is defined as a macro, the call to length can be made at compile-time. In the
macro version we also avoid the expense of manipulating the &rest parameter at
runtime. In many implementations, avg will be faster written as amacro.

The kind of savings which comes from knowing the number of arguments at
expansion-time can be combined with the kind we get from in (page 152), where
it was possible to avoid even evaluating some of the arguments. Figure 13.2
containstwo versions of most-of, which returnstrue if most of its argumentsdo:

181

182 COMPUTATION AT COMPILE-TIME

(defun avg (&rest args)
(/ (apply #’+ args) (length args)))

(defmacro avg (&rest args)
“(/ (+ ,@args) ,(length args)))

Figure 13.1: Shifting computation when finding averages.

(defun most-of (&rest args)
(let ((all 0)
(hits 0))
(dolist (a args)
(incf all)
(if a (incf hits)))
(> hits (/ all 2))))

(defmacro most-of (&rest args)
(let ((need (floor (/ (length args) 2)))
(hits (gensym)))
“(let ((,hits 0))
(or ,@(mapcar #’(lambda (a)
‘(and ,a (> (incf ,hits) ,need)))
args)))))

Figure 13.2: Shifting and avoiding computation.

> (most-of t t t nil)
T

The macro version expands into code which, like in, only evaluates as many of
the arguments as it needs to. For example, (most-of (a) (b) (c)) expands

into the equivalent of:

(let ((count 0))
(or (and (a) (> (incf count) 1))
(and (b) (> (incf count) 1))
(and (c) (> (incf count) 1))))

In the best case, just over half the argumentswill be evaluated.

131 NEW UTILITIES 183

(defun nthmost (n 1lst)
(nth n (sort (copy-list 1lst) #’>)))

(defmacro nthmost (n 1lst)
(if (and (integerp n) (< n 20))
(with-gensyms (glst gi)
(let ((syms (mapO-n #’(lambda (x) (gensym)) n)))
‘(let ((,glst ,1st))
(unless (< (length ,glst) ,(1+ n))
,0(gen-start glst syms)
(dolist (,gi ,glst)
, (nthmost-gen gi syms t))
, (car (last syms))))))
‘(nth ,n (sort (copy-list ,1lst) #’>))))

(defun gen-start (glst syms)
(reverse
(maplist #’(lambda (syms)
(let ((var (gensym)))
‘(let ((,var (pop ,glst)))
, (nthmost-gen var (reverse syms)))))
(reverse syms))))

(defun nthmost-gen (var vars &optional long?)
(if (null vars)
nil
(let ((else (nthmost-gen var (cdr vars) long?)))
(if (and (not long?) (null else))
‘(setq ,(car vars) ,var)
‘(if (> ,var ,(car vars))
(setq ,@(mapcan #’list
(reverse vars)
(cdr (reverse vars)))
, (car vars) ,var)

,else)))))

Figure 13.3: Use of arguments known at compile-time.

184 COMPUTATION AT COMPILE-TIME

A macro may also be able to shift computation to compile-time if the values
of particular arguments are known. Figure 13.3 contains an example of such a
macro. Thefunctionnthmost takesanumber n and alist of numbers, and returns
the nth largest among them; like other sequence functions, it is zero-indexed:

> (nthmost 2 (2 6 1 5 3 4))
4

The function version is written very simply. It sorts the list and calls nth on
the result. Since sort is destructive, nthmost copies the list before sorting it.
Written thus, nthmost is inefficient is two respects: it conses, and it sorts the
entirelist of arguments, though all we care about are the top n.

If we know n at compile-time, we can approach the problem differently. The
rest of the code in Figure 13.3 defines a macro version of nthmost. The first
thing this macro does is look at its first argument. If the first argument is not a
literal number, it expands into the same code we saw above. If the first argument
isanumber, we can follow adifferent course. If you wanted to find, say, the third
biggest cookie on aplate, you could do it by looking at each cookiein turn, always
keeping in your hand the three biggest found so far. When you have |ooked at all
the cookies, the smallest cookie in your hand is the one you are looking for. 1f n
isasmall constant, not proportional to the number of cookies, then this technique
gets you a given cookie with less effort that it would take to sort all of them first.

This is the strategy followed when n is known at expansion-time. In its
expansion, the macro creates n variables, then callsnthmost-gen to generate the
code which has to be evaluated upon looking at each cookie. Figure 13.4 shows
a sample macroexpansion. The macro nthmost behaves just like the original
function, except that it can’'t be passed as an argument to apply. Thejustification
for using amacro is purely one of efficiency: the macro version does not cons at
runtime, and if nisasmall constant, performs fewer comparisons.

To have efficient programs, must one then take the troubl e to write such huge
macros? In this case, probably not. The two versions of nthmost areintended as
an example of a general principle: when some arguments are known at compile-
time, you can use a macro to generate more efficient code. Whether or not you
take advantage of this possibility will depend on how much you stand to gain,
and how much more effort it will take to write an efficient macro version. Since
the macro version of nthmost is long and complicated, it would only be worth
writing in extreme cases. However, information known at compile-timeis always
afactor worth considering, even if you choose not to take advantage of it.

13.2 EXAMPLE: BEZIER CURVES 185

(nthmost 2 nums)

expandsinto:

(let ((#:g7 nums))
(unless (< (length #:g7) 3)
(let ((#:g6 (pop #:g7)))
(setq #:g1 #:g6))
(let ((#:g5 (pop #:£7)))
(if (> #:g5 #:g1)
(setq #:g2 #:g1 #:g1 #:g5)
(setq #:g2 #:g5)))
(let ((#:g4 (pop #:g7)))
(Af O #:g4 #:g1)
(setq #:g3 #:g2 #:g2 #:g1 #:g1 #:g4)
(Gf (O #:g4 #:g2)
(setq #:g3 #:g2 #:g2 #:g4)
(setq #:g3 #:g4))))
(dolist (#:g8 #:g7)
(if (> #:g8 #:g1)
(setq #:g3 #:g2 #:g2 #:g1 #:g1 #:g8)
(Gif (> #:g8 #:g2)
(setq #:g3 #:g2 #:g2 #:g8)
(if (> #:g8 #:g3)
(setq #:g3 #:g8)
nil))))
#:23))

Figure 13.4: Expansion of nthmost.

13.2 Example: Bezier Curves

Like thewith- macro (Section 11.2), the macro for computation at compile-time
is more likely to be written for a specific application than as a general-purpose
utility. How much can a general-purpose utility know at compile-time? The
number of arguments it has been given, and perhaps some of their values. If
we want to use other constraints, they will probably have to be onesimposed by
individual programs.

As an example, this section shows how macros can speed up the generation
of Bezier curves. Curves must be generated fast if they are being manipulated
interactively. It turns out that if the number of segments in the curve is known

186 COMPUTATION AT COMPILE-TIME

beforehand, most of the computation can be done at compile-time. By writing our
curve-generator as a macro, we can weave precomputed values right into code.
This should be even faster than the more usual optimization of storing them in an
array.

A Bezier curve is defined in terms of four points—two endpoints and two
control points. When we are working in two dimensions, these points define
parametric equations for the x and y coordinates of points on the curve. If the
two endpoints are (Xo, Yo) and (xs, y3) and the two control points are (x1, y1) and
(X2, ¥2), then the equations defining points on the curve are:

x = (z3— 3wz + 321 — z0)u® + (32 — 621 + 3x0)u® + (321 — 3w0)U + 20
y = (ys—3y2 + 3y1 — yo)u’ + (3y2 — 6y1 + 3yo)u® + (3y1 — Byo)u + yo

If we evaluate these equations for n values of u between 0 and 1, we get n points
on the curve. For example, if we want to draw the curve as 20 segments, then we
would evaluate the equationsfor u = .05, .1,.. ., .95. Thereis no need to evaluate
them for uof 0 or 1, becauseif u= 0they will yield the first endpoint (x o, Yo), and
if u=1they will yield the second endpoint (xs, y3).

An obvious optimization is to make n fixed, cal culate the powers of u before-
hand, and store them in an (n—1) x 3 array. By defining the curve-generator as
a macro, we can do even better. If nis known at expansion-time, the program
could simply expand into n line-drawing commands. The precomputed powers of
u, instead of being stored in an array, could be inserted as literal valuesright into
the macro expansion.

Figure 13.5 containsacurve-generating macro whichimplementsthisstrategy.
Instead of drawing linesimmediately, it dumps the generated pointsinto an array.
When acurve is moving interactively, each instance has to be drawn twice: once
to show it, and again to erase it before drawing the next. In the meantime, the
points have to be saved somewhere.

With n = 20, genbez expands into 21 setfs. Since the powers of u appear
directly in the code, we save the cost of looking them up at runtime, and the cost
of computing them at startup. Like the powers of u, the array indices appear as
constants in the expansion, so the bounds-checking for the (setf aref)scould
also be done at compile-time.

13.3 Applications

Later chapters contain several other macros which use information available at
compile-time. A good exampleis if-match (page 242). Pattern-matchers com-
pare two seguences, possibly containing variables, to seeif there is some way of
assigning values to the variables which will make the two sequences equal. The

13.3 APPLICATIONS 187

(defconstant *segs* 20)
(defconstant *dux (/ 1.0 *segs*))
(defconstant *pts* (make-array (list (1+ *segs*) 2)))

(defmacro genbez (x0 yO x1 yl x2 y2 x3 y3)
(with-gensyms (gx0 gx1 gy0 gyl gx3 gy3)
‘(let ((,gx0 ,x0) (,gy0 ,y0)
Gegxtl ,x1) (gyl ,yD
(,gx3 ,x3) (,gy3 ,y3))
(let ((cx (x (- ,gxl ,gx0) 3))
(cy (x (- ,gyl ,gy0) 3))
(px (x (- ,x2 ,gx1) 3))
(py (x (- ,y2 ,gyl) 3)))
(let ((bx (- px cx))
(by (- py cy))
(ax (- ,gx3 px ,gx0))
(ay (- ,gy3 py ,gy0)))
(setf (aref *pts* 0 0) ,gx0
(aref *pts* 0 1) ,gy0)
,@(mapl-n #’ (lambda (n)
(let* ((u (* n *dux))
(™2 (x uw)
(u~3 (expt u 3)))
‘(setf (aref *pts* ,n 0)
(+ (x ax ,u"3)
(x bx ,u"2)
(x cx ,u)
,8x0)
(aref *pts*x ,n 1)
(+ (x ay ,u"3)
(* by ,u"2)
(* cy ,u)
,8y0))))
(1- *segs*))
(setf (aref *ptsx xsegs* 0) ,gx3
(aref *pts* *segs* 1) ,gy3))))))

Figure 13.5: Macro for generating Bezier curves.

188 COMPUTATION AT COMPILE-TIME

design of if-match showsthat if one of the sequencesis known at compile-time,
and only that one contains variables, then matching can be done more efficiently.
Instead of comparing the two sequences at runtime and consing up lists to hold
the variable bindings established in the process, we can have a macro generate
code to perform the exact comparisons dictated by the known sequence, and can
store the bindingsin real Lisp variables.

The embedded languages described in Chapters 19-24 al so, for the most part,
take advantage of information available at compile-time. Since an embedded
languageisacompiler of sorts, it'sonly natural that it should use suchinformation.
As agenerd rule, the more elaborate the macro, the more constraints it imposes
onitsarguments, and the better your chances of using these constraintsto generate
efficient code.

14

Anaphoric Macros

Chapter 9 treated variable capture exclusively as a problem—as something which
happens inadvertently, and which can only affect programs for the worse. This
chapter will show that variable capture can also be used constructively. There are
some useful macros which couldn’t be written without it.

It's not uncommon in a Lisp program to want to test whether an expression
returnsanon-nil value, and if so, to do something withthevalue. If the expression
is costly to evaluate, then one must normally do something like this:

(let ((result (big-long-calculation)))
(if result
(foo result)))

Wouldn't it be easier if we could just say, as we would in English:

(if (big-long-calculation)
(foo it))

By taking advantage of variable capture, we can writeaversion of if whichworks
just thisway.
141 Anaphoric Variants

In natural language, an anaphor is an expression which refers back in the con-
versation. The most common anaphor in English is probably “it,” asin “ Get the
wrench and put it on the table” Anaphora are a great convenience in everyday

189

190 ANAPHORIC MACROS

|language—imaginetrying to get al ong without them—~but they don’t appear much
in programminglanguages. For themost part, thisisgood. Anaphoricexpressions
are often genuinely ambiguous, and present-day programming languages are not
designed to handle ambiguity.

However, it is possible to introduce a very limited form of anaphora into
Lisp programs without causing ambiguity. An anaphor, it turns out, is alot like
a captured symbol. We can use anaphora in programs by designating certain
symbols to serve as pronouns, and then writing macros intentionally to capture
these symbols.

In the new version of if, the symbol it isthe one we want to capture. The
anaphoricif, caled aif for short, is defined as follows:

(defmacro aif (test-form then-form &optional else-form)
“(let ((it ,test-form))
(if it ,then-form ,else-form)))

and used asin the previous example:

(aif (big-long-calculation)
(foo it))

When you use an aif, the symbol it isleft bound to the result returned by the
test clause. Inthe macro call, it seemsto befree, but in fact the expression (foo
it) will beinserted by expansion of the aif into a context in which the symbol
it isbound:

(let ((it (big-long-calculation)))
(if it (foo it) nil))

So a symbol which looks free in the source code is left bound by the macroex-
pansion. All the anaphoric macros in this chapter use some variation of the same
technique.

Figure 14.1 contains anaphoric variants of several Common Lisp operators.
After aif comes awhen, the obvious anaphoric variant of when:

(awhen (big-long-calculation)
(foo it)
(bar it))

Both aif and awhen are frequently useful, but awhile is probably unique
among the anaphoric macros in being more often needed than its regular cousin,
while (defined on page 91). Macroslike while and awhile are typicaly used
in situations where a program needs to poll some outside source. And when you
are polling a source, unless you are simply waiting for it to change state, you will
usually want to do something with the object you find there;

14.1 ANAPHORIC VARIANTS 191

(defmacro aif (test-form then-form &optional else-form)
“(let ((it ,test-form))
(if it ,then-form ,else-form)))

(defmacro awhen (test-form &body body)
‘(aif ,test-form
(progn ,@body)))

(defmacro awhile (expr &body body)
“(do ((it ,expr ,expr))
((not it))
,@body))

(defmacro aand (&rest args)
(cond ((null args) t)
((null (cdr args)) (car args))
(t ‘(aif ,(car args) (aand ,@(cdr args))))))

(defmacro acond (&rest clauses)
(if (null clauses)
nil
(let ((cl1l (car clauses))
(sym (gensym)))
‘(let ((,sym ,(car cl1)))
(if ,sym
(let ((it ,sym)) ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

Figure 14.1: Anaphoric variants of Common Lisp operators.

(awhile (poll *fridgex)
(eat it))

The definition of aand is a bit more complicated than the preceding ones.
It provides an anaphoric version of and; during the evaluation of each of its
arguments, it will be bound to the value returned by the previous argument. * In
practice, aand tends to be used in programs which make conditional queries, as
in:

1Although one tends to think of and and or together, there would be no point in writing an
anaphoric version of or. An argument in an or expression is evaluated only if the previous argument
evaluated tonil, so there would be nothing useful for an anaphor to refer toin an aor.

192 ANAPHORIC MACROS

(aand (owner x) (address it) (town it))

which returnsthe town (if thereisone) of the address (if thereis one) of the owner
(if thereis one) of x. Without aand, this expression would have to be written

(let ((own (owner x)))
(if own
(let ((adr (address own)))
(if adr (town adr)))))

The definition of aand shows that the expansion will vary depending on the
number of argumentsinthe macro call. If there are no arguments, then aand, like
the regular and, should ssimply return t. Otherwise the expansion is generated
recursively, each step yielding one layer in a chain of nested aifs:

(aif (first argument)
(expansion for rest of arguments))

The expansion of an aand must terminate when thereis one argument | eft, instead
of working its way down to nil like most recursive functions. If the recursion
continued until no conjuncts remained, the expansion would always be of the
form:

(aif <C1>

(aif (cp)
t)...)

Such an expressionwould alwaysreturnt ornil, and the exampleabovewouldn’t
work asintended.

Section 10.4 warned that if a macro always yielded an expansion containing
acdl to itself, the expansion would never terminate. Though recursive, aand is
safe because in the base case its expansion doesn't refer to aand.

The last example, acond, is meant for those cases where the remainder of a
cond clause wantsto use the value returned by thetest expression. (Thissituation
arises so often that some Scheme implementations provide away to use the value
returned by the test expressionin a cond clause.)

In the expansion of an acond clause, the result of the test expression will
initially be kept in agensymed variable, in order that the symbol it may be bound
only withintheremainder of theclause. When macroscreate bindings, they should
aways do so over the narrowest possible scope. Here, if we dispensed with the

141 ANAPHORIC VARIANTS 193

(defmacro alambda (parms &body body)
‘(labels ((self ,parms ,@body))
#’self))

(defmacro ablock (tag &rest args)
“(block ,tag
, (funcall (alambda (args)
(case (length args)
(0 nil)
(1 (car args))
(t “(let ((it ,(car args)))
, (self (cdr args))))))
args)))

Figure 14.2: More anaphoric variants.

gensym and instead bound it immediately to the result of the test expression, as
in:

(defmacro acond (&rest clauses) ; wrong
(if (null clauses)
nil
(let ((cl1l (car clauses)))
‘(let ((it ,(car cl1)))
(if it

(progn ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

then that binding of it would also have within its scope the following test expres-
sion.

Figure 14.2 contains some more complicated anaphoric variants. The macro
alambda is for referring literally to recursive functions. When does one want to
refer literally to arecursive function? We can refer literally to afunction by using
a sharp-quoted lambda-expression:

#’ (lambda (x) (*x x 2))

But as Chapter 2 explained, you can’t express a recursive function with asimple
lambda-expression. Instead you haveto definealocal functionwith 1abels. The
following function (reproduced from page 22)

194 ANAPHORIC MACROS

(defun count-instances (obj lists)
(labels ((instances-in (list)
(if list
(+ (if (eq (car list) obj) 1 0)
(instances-in (cdr list)))

(DD))

(mapcar #’instances-in lists)))

takes an object and alist, and returns a list of the number of occurrences of the
object in each element:

> (count-instances ’a ((abc) (darpa) (dar) (aa)))
(1212

With anaphora we can make what amounts to a literal recursive function. The
alambda macro uses labels to create one, and thus can be used to express, for
example, the factorial function:

(alambda (x) (if (= x 0) 1 (*x x (self (1- x)))))

Using alambda we can define an equivalent version of count-instances as
follows:

(defun count-instances (obj lists)
(mapcar (alambda (list)
(if list
(+ (if (eq (car list) obj) 1 0)
(self (cdr list)))
0))
lists))

Unlike the other macrosin Figures 14.1 and 14.2, which all captureit, alambda
captures self. An instance of alambda expands into a 1labels expression in
which self is bound to the function being defined. As well as being smaller,
alambda expressions look like familiar 1ambda expressions, making code which
uses them easier to read.

The new macrois used inthe definition of ablock, an anaphoric version of the
built-inblock specia form. Inablock, the argumentsare evaluated left-to-right.
The same happensin an ablock, but within each the variable it will be bound to
the value of the previous expression.

This macro should be used with discretion. Though convenient at times,
ablock wouldtendto beat what could be nice functional programsinto imperative
form. Thefollowing is, unfortunately, a characteristically ugly example:

14.2 FAILURE 195

> (ablock north-pole

(princ "ho ")

(princ it)

(princ it)

(return-from north-pole))
ho ho ho
NIL

Whenever a macro which does intentional variable capture is exported to
another package, it is necessary also to export the symbol being captured. For
example, wherever aif isexported, it should beaswell. Otherwisethe it which
appears in the macro definition would be adifferent symbol froman it usedin a
macro call.

14.2 Failure

In Common Lisp the symbol nil has at least three different jobs. Itisfirst of al
the empty list, so that

> (cdr ’(a))
NIL

Aswell astheempty list, nil is used to represent falsity, asin

> (=10)
NIL

And finally, functionsreturn nil to indicate failure. For example, the job of the
built-in £ind-if isto return the first element of alist which satisfies some test.
If no such element isfound, find-if returnsnil:

> (find-if #’oddp ’(2 4 6))
NIL

Unfortunately, we can't tell this case from the one in which find-if succeeds,
but succeedsin findingnil:

> (find-if #’null ’ (2 nil 6))
NIL

In practice, it doesn’t cause too much trouble to usenil to represent both falsity
and the empty list. In fact, it can be rather convenient. However, it is a pain to
havenil represent failure as well, because it means that the result returned by a
function like find-if can be ambiguous.

196 ANAPHORIC MACROS

The problem of distinguishing between failure and anil return value arises
with any function which looks things up. Common Lisp offers no less than three
solutions to the problem. The most common approach, before multiple return
values, was to return gratuitous list structure. There is no trouble distinguishing
failure with assoc, for example; when successful it returns the whole pair in
question:

> (setq synonyms ’((yes . t) (no . nil)))
((YES . T) (NO))

> (assoc ’no synonyms)

(ND)

Following this approach, if we were worried about ambiguity with find-if, we
would use member-if, which instead of just returning the element satisfying the
test, returns the whole cdr which beginswith it:

> (member-if #’null ’ (2 nil 6))
(NIL 6)

Since the advent of multiple return values, there has been another solution to
this problem: use one value for data and a second to indicate success or failure.
The built-in gethash works this way. It always returns two values, the second
indicating whether anything was found:

> (setf edible (make-hash-table)
(gethash ’olive-oil edible) t
(gethash ’motor-oil edible) nil)

NIL

> (gethash ’motor-oil edible)

NIL

T

So if you want to detect all three possible cases, you can use an idiom like the
following:

(defun edible? (x)
(multiple-value-bind (val found?) (gethash x edible)
(if found?
(if val ’yes ’no)
’maybe)))

thereby distinguishing falsity from failure:

> (mapcar #’edible? ’(motor-oil olive-oil iguana))
(NO YES MAYBE)

14.3 FAILURE 197

Common Lisp supports yet a third way of indicating failure: to have the
access function take as an argument a special object, presumably a gensym, to
be returned in case of failure. This approach is used with get, which takes an
optional argument saying what to return if the specified property isn’t found:

> (get ’life ’meaning (gensym))
#:G618

Where multiple return values are possible, the approach used by gethash
is the cleanest. We don’'t want to have to pass additional arguments to every
access function, aswe do with get. And between the other two aternatives, using
multiplevaluesisthemoregeneral; £ ind-if could bewritten to return twovalues,
but gethash could not, without consing, be written to return disambiguating list
structure. Thus in writing new functions for lookup, or for other tasks where
failureis possible, it will usually be better to follow the model of gethash.

The idiom found in edible? is just the sort of bookkeeping which is well
hidden by amacro. For accessfunctionslike gethash wewill want anew version
of aif which, instead of binding and testing the same value, bindsthefirst but also
tests the second. The new version of aif, called aif2, isshown in Figure 14.3.
Using it we could write edible? as.

(defun edible? (x)
(aif2 (gethash x edible)
(if it ’yes ’no)
’maybe))

Figure 14.3 also contains similarly altered versions of awhen, awhile, and
acond. For an example of the use of acond2, see the definition of match on
page 239. By using this macro we are able to expressin the form of a cond a
function that would otherwise be much longer and less symmetrical.

The built-in read indicates failure in the same way as get. It takes optional
arguments saying whether or not to generate an error in case of eof, and if not,
what value to return. Figure 14.4 contains an aternative version of read which
uses a second return valueto indicate failure: read?2 returnstwo values, the input
expression and a flag which isnil upon eof. It cals read with a gensym to
be returned in case of eof, but to save the trouble of building the gensym each
timeread?2 is called, the function is defined as a closure with a private copy of a
gensym made at compile time.

Figure 14.4 also contains a convenient macro to iterate over the expressionsin
afile, written using awhile2 and read2. Using do-file we could, for example,
write aversion of load as:

(defun our-load (filename)
(do-file filename (eval it)))

198 ANAPHORIC MACROS

(defmacro aif2 (test &optional then else)
(let ((win (gensym)))
‘(multiple-value-bind (it ,win) ,test
(if (or it ,win) ,then ,else))))

(defmacro awhen2 (test &body body)
‘(aif2 ,test
(progn ,@body)))

(defmacro awhile2 (test &body body)
(let ((flag (gensym)))
‘(let ((,flag t))
(while ,flag
(aif2 ,test
(progn ,@body)
(setq ,flag nil))))))

(defmacro acond2 (&rest clauses)
(if (null clauses)
nil
(let ((cl1l (car clauses))
(val (gensym))
(win (gensym)))
‘(multiple-value-bind (,val ,win) ,(car cl1)
(if (or ,val ,win)
(let ((it ,val)) ,@(cdr cl1))
(acond2 ,@(cdr clauses)))))))

Figure 14.3: Multiple-value anaphoric macros.

14.3 Referential Transparency

Anaphoric macros are sometimes said to violate referential transparency, which
Gelernter and Jagannathan define as follows:

A language is referentially transparent if (a) every subexpression
can be replaced by any other that's equal to it in value and (b) all
occurrences of an expression within a given context yield the same
value.

Notethat thisstandard appliesto languages, not to programs. No language with
assignment is referentially transparent. Thefirst and the last x in this expression

14.3

REFERENTIAL TRANSPARENCY

199

(let ((g (gensym)))

,@body))))

(defun read2 (&optional (str *standard-input*))
(let ((val (read str nil g)))
(unless (equal val g) (values val t)))))

(defmacro do-file (filename &body body)
(let ((str (gensym)))
‘(with-open-file (,str ,filename)
(awhile2 (read2 ,str)

Figure 14.4:; File utilities.

(list x

(setq x (not x))

x)

yield different values, because a setq intervenes. Admittedly, thisis ugly code.
Thefact that it is even possible meansthat Lisp is not referentially transparent.
Norvig mentionsthat it would be convenient to redefine i f as:

(defmacro if (test then &optional else)
‘(let ((that ,test))
(if that ,then ,else)))

but rejects this macro on the groundsthat it violates referential transparency.

However, the problem here comes from redefining built-in operators, not from
using anaphora. Clause (b) of the definition above requires that an expression
always return the same value “within a given context.” 1t is no problem if, within

this 1let expression,

(let ((that ’which))
)

the symbol that denotes a new variable, because let is advertised to create a

new context.

Thetroublewith the macro aboveisthat it redefinesif, whichisnot supposed
to create a new context. This problem goes away if we give anaphoric macros
distinct names. (Asof cLTLZ, itisillegal to redefine if anyway.) Aslong asitis
part of the definition of aif that it establishes a new context inwhich it isanew
variable, such amacro does not violate referential transparency.

200 ANAPHORIC MACROS

Now, aif does violate another convention, which has nothing to do with
referential transparency: that newly established variables somehow be indicated
in the source code. The let expression above clearly indicates that that will
refer to anew variable. It could be argued that the binding of it withinan aif is
not so clear. However, thisis not a very strong argument: aif only creates one
variable, and the creation of that variable is the only reason to useit.

Common Lisp itself does not treat this convention asinviolable. The binding
of thecLos function call-next-method dependson the context in just the same
way that the binding of the symbol it does within the body of an aif. (For a
suggestion of how call-next-method would be implemented, see the macro
defmeth on page 358.) In any case, such conventions are only supposed to be
a means to an end: programs which are easy to read. And anaphora do make
programs easier to read, just as they make English easier to read.

15

M acros Returning Functions

Chapter 5 showed how to write functions which return other functions. Macros
make the task of combining operators much easier. This chapter will show how to
use macrosto build abstractionswhich areequival ent to those defined in Chapter 5,
but cleaner and more efficient.

15.1 Building Functions

If f and g are functions, then fog(x) = f(g(x)). Section 5.4 showed how to
implement the o operator asa Lisp function called compose:

> (funcall (compose #’list #’1+) 2)
3

Inthissection, we consider waysto define better function builderswith macros.
Figure 15.1 containsageneral function-builder called £n, which builds compound
functions from their descriptions. Its argument should be an expression of the
form (operator . arguments). The operator can be the name of a function or
macro—or compose, wWhich is treated specially. The arguments can be names of
functions or macros of one argument, or expressions that could be arguments to
fn. For example,

(fn (and integerp oddp))
yields a function equivalent to

#’ (lambda (x) (and (integerp x) (oddp x)))

201

202 MACROS RETURNING FUNCTIONS

(defmacro fn (expr) ‘#’,(rbuild expr))

(defun rbuild (expr)
(if (or (atom expr) (eq (car expr) ’lambda))
expr
(if (eq (car expr) ’compose)
(build-compose (cdr expr))
(build-call (car expr) (cdr expr)))))

(defun build-call (op fns)
(let ((g (gensym)))
‘(lambda (,g)
(,op ,@(mapcar #’(lambda (f)
“(,(rbuild £) ,g))
fns)))))

(defun build-compose (fns)
(let ((g (gensym)))
‘(lambda (,g)

, (labels ((rec (fns)
(if fns

‘(,(rbuild (car fns))

,(rec (cdr fns)))
g)))
(rec fns)))))

Figure 15.1: General function-building macro.

If we use compose as the operator, we get a function representing the compo-
sition of the arguments, but without the explicit funcallsthat were needed when

compose was defined as a function. For example,
(fn (compose list 1+ truncate))
expandsinto:

#’(lambda (#:g1) (list (1+ (truncate #:gl1))))

which enables inline compilation of simple functions like 1ist and 1+. The
f£n macro takes names of operatorsin the general sense; lambda-expressions are

alowed too, asin

15.1 BUILDING FUNCTIONS 203

(fn (compose (lambda (x) (+ x 3)) truncate))
which expandsinto
#’ (lambda (#:g2) ((lambda (x) (+ x 3)) (truncate #:g2)))

Here the function expressed as a lambda-expression will certainly be compiled
inline, whereas a sharp-quoted lambda-expression given as an argument to the
function compose would have to be funcalled.

Section 5.4 showed how to define three more function builders: £if, fint,
and fun. These are now subsumed in the general fn macro. Using and as the
operator yields the intersection of the operators given as arguments:

> (mapcar (fn (and integerp oddp))
’(c 3 p 0))
(NIL T NIL NIL)

while or yields the union:

> (mapcar (fn (or integerp symbolp))
’(c 3 p 0.2))
(T T T NIL)

and if yields afunction whose body is a conditional:

> (mapl-n (fn (if oddp 1+ identity)) 6)
(22446 6)

However, we can use other Lisp functions besides these three:

> (mapcar (fn (list 1- identity 1+))
’(1 2 3))
((012) (123) (234)

and the argumentsin the £n expression may themselves be expressions:

> (remove-if (fn (or (and integerp oddp)
(and consp cdr)))
(1 (ab) c (A 23.4 (e g)))
(c (D) 2 3.4

Making fn treat compose asaspecia case doesnot makeit any more powerful.
If you nest the argumentsto fn, you get functional composition. For example,

(fn (list (1+ truncate)))

204 MACROS RETURNING FUNCTIONS

expandsinto:

#’ (lambda (#:g1)
(1ist ((lambda (#:g2) (1+ (truncate #:g2))) #:g1)))

which behaves like
(compose #’list #’1+ #’truncate)

The £n macro treats compose as a special case only to make such calls easier to
read.

15.2 Recursion on Cdrs

Sections 5.5 and 5.6 showed how to write functionsthat build recursive functions.
The following two sections show how anaphoric macros can provide a cleaner
interface to the functions we defined there.

Section 5.5 showed how to define aflat list recurser builder called 1rec. With
lrec we can expressacal to:

(defun our-every (fn lst)
(if (null 1st)
t
(and (funcall fn (car 1st))
(our-every fn (cdr 1st)))))

for eg. oddp as

(1rec #’ (lambda (x f) (and (oddp x) (funcall £f)))
t)

Here macros could make life easier. How much do we really have to say to
express recursive functions? If we can refer anaphorically to the current car of
thelist (asit) and therecursive call (asrec), we should be able to make do with
something like:

(alrec (and (oddp it) rec) t)

Figure 15.2 contains the definition of the macro which will alow usto say this.

> (funcall (alrec (and (oddp it) rec) t)
’(1 3 5))
T

15.2 RECURSION ON CDRS 205

(defmacro alrec (rec &optional base)
"cltl2 version"
(let ((gfn (gensym)))
‘(lrec #’(lambda (it ,gfn)
(symbol-macrolet ((rec (funcall ,gfn)))
,rec))
,base)))

(defmacro alrec (rec &optional base)
"cltll version"
(let ((gfn (gensym)))
‘(lrec #’(lambda (it ,gfn)
(labels ((rec () (funcall ,gfn)))
,rec))
,base)))

(defmacro on-cdrs (rec base &rest lsts)
¢ (funcall (alrec ,rec #’(lambda () ,base)) ,@lsts))

Figure 15.2: Macrosfor list recursion.

The new macro works by transforming the expression given as the second
argument into a function to be passed to 1rec. Since the second argument may
refer anaphorically to it or rec, in the macro expansion the body of the function
must appear within the scope of bindings established for these symbols.

Figure 15.2 actually has two different versions of alrec. The version used
in the preceding examples requires symbol macros (Section 7.11). Only recent
versions of Common Lisp have symbol macros, so Figure 15.2 also contains
a dlightly less convenient version of alrec in which rec is defined as a local
function. The price is that, as afunction, rec would have to be enclosed within
parentheses:

(alrec (and (oddp it) (rec)) t)

Theoriginal versionispreferablein Common Lispimplementationswhich provide
symbol-macrolet.

Common Lisp, with its separate name-space for functions, makes it awkward
to use these recursion buildersto define named functions:

(setf (symbol-function ’our-length)
(alrec (1+ rec) 0))

206 MACROS RETURNING FUNCTIONS

(defun our-copy-list (1lst)
(on-cdrs (cons it rec) nil 1st))

(defun our-remove-duplicates (lst)
(on-cdrs (adjoin it rec) nil 1st))

(defun our-find-if (fn 1st)
(on-cdrs (if (funcall fn it) it rec) nil 1st))

(defun our-some (fn 1lst)
(on-cdrs (or (funcall fn it) rec) nil 1lst))

Figure 15.3; Common Lisp functions defined with on-cdrs.

The final macro in Figure 15.2 is intended to make this more abstract. Using
on-cdrs we could say instead:

(defun our-length (1st)
(on-cdrs (1+ rec) 0 1st))

(defun our-every (fn 1st)
(on-cdrs (and (funcall fn it) rec) t 1lst))

Figure 15.3 shows some existing Common Lisp functions defined with the
new macro. Expressed with on-cdrs, these functions are reduced to their most
basic form, and we notice similarities between them which might not otherwise
have been apparent.

Figure 15.4 contains some new utilities which can easily be defined with
on-cdrs. Thefirst three, unions, intersections, and differences imple-
ment set union, intersection, and complement, respectively. Common Lisp has
built-in functions for these operations, but they can only take two lists at a time.
Thus if we want to find the union of three lists we have to say:

> (union ’(a b) (union ’(b c) ’(c d)))
(A BCD)

Thenew unions behaveslike union, but takes an arbitrary number of arguments,
so that we could say:

> (unions ’(a b) (b c) ’(c 4))
(D C A B)

15.2 RECURSION ON CDRS 207

(defun unions (&rest sets)
(on-cdrs (union it rec) (car sets) (cdr sets)))

(defun intersections (&rest sets)
(unless (some #’null sets)
(on-cdrs (intersection it rec) (car sets) (cdr sets))))

(defun differences (set &rest outs)
(on-cdrs (set-difference rec it) set outs))

(defun maxmin (args)
(when args
(on-cdrs (multiple-value-bind (mx mn) rec
(values (max mx it) (min mn it)))
(values (car args) (car args))
(cdr args))))

Figure 15.4: New utilities defined with on-cdrs.

Likeunion, unions doesnot preservethe order of the elementsin theinitial lists.
The same relation holds between the Common Lisp intersection and the
more general intersections. In the definition of this function, the initial test
for null arguments was added for efficiency; it short-circuits the computation if
one of the setsis empty.
Common Lisp aso has afunction called set-difference, which takes two
lists and returns the elements of the first which are not in the second:

> (set-difference (a b c d) ’(a c))
(D B)

Our new version handles multiple arguments much as - does. For example,
(differences x y z)isequivaentto (set-difference x (unions y z)),
though without the consing that the latter would entail.

> (differences (a b cde) ’(a f) ’(d)
(B C E)

These set operators are intended only as examples. Thereis no real need for
them, because they represent a degenerate case of list recursion aready handled
by the built-in reduce. For example, instead of

(unions ...)

208 MACROS RETURNING FUNCTIONS

you might aswell say just
((lambda (&rest args) (reduce #’union args)) ...)

In the general case, on-cdrs is more powerful than reduce, however.

Because rec refersto acall instead of avalue, we can use on-cdrs to create
functionswhich return multiplevalues. Thefinal functionin Figure 15.4, maxmin,
takes advantage of this possibility to find both the maximum and minimum ele-
mentsin asingle traversal of alist:

> (maxmin (34285 167))
8
1

It would also have been possible to use on-cdrs in some of the code which
appearsin later chapters. For example, compile-cmds (page 310)

(defun compile-cmds (cmds)
(if (null cmds)
‘regs
“(,0(car cmds) ,(compile-cmds (cdr cmds)))))

could have been defined as simply:

(defun compile-cmds (cmds)
(on-cdrs ‘(,@it ,rec) ’regs cmds))

15.3 Recursion on Subtrees

What macros did for recursion on lists, they can also do for recursion on trees.
In this section, we use macros to define cleaner interfaces to the tree recursers
defined in Section 5.6.

In Section 5.6 wedefined twotreerecursion builders, t trav, which alwaystra
versesthewholetree, and trec which is more complex, but allows you to control
when recursion stops. Using these functions we could express our-copy-tree

(defun our-copy-tree (tree)
(if (atom tree)
tree
(cons (our-copy-tree (car tree))
(if (cdr tree) (our-copy-tree (cdr tree))))))

15.4 RECURSION ON SUBTREES 209

(ttrav #’cons)
andacal torfind-if

(defun rfind-if (fn tree)
(if (atom tree)
(and (funcall fn tree) tree)
(or (rfind-if fn (car tree))
(and (cdr tree) (rfind-if fn (cdr tree))))))

for eg. oddp as

(trec #’(lambda (o 1 r) (or (funcall 1) (funcall r)))
#’ (lambda (tree) (and (oddp tree) tree)))

Anaphoric macros can make abetter interfaceto trec, asthey did for 1recin
the previous section. A macro sufficient for the general case will have to be able
to refer anaphorically to three things: the current tree, which we'll call it, the
recursion down the left subtree, which we'll call 1eft, and the recursion down
theright subtree, whichwe'll call right. With these conventions established, we
should be able to express the preceding functionsin terms of a new macro thus:

(atrec (cons left right))

(atrec (or left right) (and (oddp it) it))

Figure 15.5 contains the definition of this macro.

Inversionsof Lispwhichdon'thavesymbol-macrolet,wecandefineatrec
using the second definition in Figure 15.5. Thisversion definesleft and right
aslocal functions, so our-copy-tree would have to be expressed as:

(atrec (cons (left) (right)))

For convenience, we also define a macro on-trees, which is analogous to
on-cdrs from the previous section. Figure 15.6 shows the four functions from
Section 5.6 defined with on-trees.

As noted in Chapter 5, functions built by the recurser generators defined in
that chapter will not be tail-recursive. Using on-cdrs or on-trees to define a
function will not necessarily yield the most efficient implementation. Like the
underlying trec and 1rec, these macros are mainly for use in prototypes and in
parts of a program where efficiency is not paramount. However, the underlying
idea of this chapter and Chapter 5 is that one can write function generators and
put a clean macro interface on them. This same technique could equally well be
used to build function generators which yielded particularly efficient code.

210 MACROS RETURNING FUNCTIONS

(defmacro atrec (rec &optional (base ’it))
"cltl2 version"
(let ((1fn (gensym)) (rfn (gensym)))
‘(trec #’(lambda (it ,1fn ,rfn)
(symbol-macrolet ((left (funcall ,1fn))
(right (funcall ,rfn)))
,rec))
#’ (lambda (it) ,base))))

(defmacro atrec (rec &optional (base ’it))
"cltll version"
(let ((1fn (gensym)) (rfn (gensym)))
‘(trec #’(lambda (it ,1fn ,rfn)
(labels ((left () (funcall ,1fn))
(right (O (funcall ,rfn)))
,rec))
#’ (lambda (it) ,base))))

(defmacro on-trees (rec base &rest trees)
¢ (funcall (atrec ,rec ,base) ,Qtrees))

Figure 15.5: Macros for recursion on trees.

(defun our-copy-tree (tree)
(on-trees (cons left right) it tree))

(defun count-leaves (tree)
(on-trees (+ left (or right 1)) 1 tree))

(defun flatten (tree)
(on-trees (nconc left right) (mklist it) tree))

(defun rfind-if (fn tree)
(on-trees (or left right)
(and (funcall fn it) it)
tree))

Figure 15.6: Functions defined using on-trees.

154 LAZY EVALUATION 211

(defconstant unforced (gensym))
(defstruct delay forced closure)

(defmacro delay (expr)
(let ((self (gensym)))
‘(let ((,self (make-delay :forced unforced)))
(setf (delay-closure ,self)
#’ (lambda ()
(setf (delay-forced ,self) ,expr)))
,self)))

(defun force (x)
(if (delay-p x)

(if (eq (delay-forced x) unforced)
(funcall (delay-closure x))
(delay-forced x))

x))

Figure 15.7: Implementation of force and delay.

15.4 Lazy Evaluation

Lazy evaluation means only evaluating an expression when you need its value.
Oneway to use lazy evaluation isto build an object known as adelay. A delay is
aplaceholder for the value of some expression. It represents a promise to deliver
the value of the expression if it is needed at some later time. Meanwhile, since
the promise is a Lisp object, it can serve many of the purposes of the value it
represents. And when the value of the expression is needed, the delay can return
it.

Scheme has huilt-in support for delays. The Scheme operators force and
delay can be implemented in Common Lisp as in Figure 15.7. A delay is
represented as atwo-part structure. Thefirst field indicates whether the delay has
been evaluated yet, and if it has, contains the value. The second field contains a
closure which can be called to find the value that the delay represents. The macro
delay takes an expression, and returns adelay representing its value:

> (let ((x 2))
(setq d (delay (1+ x))))
#S(DELAY ...)

212 MACROS RETURNING FUNCTIONS

To call the closure within a delay is to force the delay. The function force
takes any object: for ordinary objects it is the identity function, but for delays it
is ademand for the value that the delay represents.

> (force ’a)
A

> (force d)
3

We use force whenever we are dealing with objects that might be delays. For
example, if we are sorting alist which might contain delays, we would say:

(sort 1lst #’(lambda (x y) (> (force x) (force y))))

It'sdlightly inconvenient to use delaysin thisnaked form. Inareal application,
they might be hidden beneath another layer of abstraction.

16

M acr o-Defining M acros

Patternsin code often signal the need for new abstractions. Thisrule holdsjust as
much for the code in macros themselves. When several macros have definitions
of a similar form, we may be able to write a macro-defining macro to produce
them. This chapter presents three examples of macro-defining macros: one to
define abbreviations, one to define access macros, and athird to define anaphoric
macros of the type described in Section 14.1.

16.1 Abbreviations

The simplest use of macros is as abbreviations. Some Common Lisp operators
have rather long names. Ranking high among them (though by no means the
longest) is destructuring-bind, which has 18 characters. A corollary of
Steel€'s principle (page 43) is that commonly used operators ought to have short
names. (“We think of addition as cheap partly because we can notate it with a
single character: ‘+'.") The built-in destructuring-bind macro introduces a
new layer of abstraction, but the actual gainin brevity is masked by itslong name:

(let ((a (car x)) (b (cdr x))) ...)
(destructuring-bind (a . b) x ...)

A program, like printed text, is easiest to read when it contains no more than about
70 characters per line. We begin at a disadvantage when the lengths of individual
names are a quarter of that.

213

214 MACRO-DEFINING MACROS

(defmacro abbrev (short long)
‘(defmacro ,short (&rest args)
“(,”,long ,@args)))

(defmacro abbrevs (&rest names)
‘ (progn
,@(mapcar #’(lambda (pair)
¢ (abbrev ,@pair))
(group names 2))))

Figure 16.1: Automatic definition of abbreviations.

Fortunately, inalanguagelike Lispyoudon’t haveto livewith al the decisions
of the designers. Having defined

(defmacro dbind (&rest args)
‘(destructuring-bind ,Q@args))

you need never use the long name again. Likewise for multiple-value-bind,
which is longer and more frequently used.

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,@args))

Notice how nearly identical are the definitions of dbind and mvbind. Indeed,
thisformulaof &rest and commarat will suffice to define an abbreviationfor any
function,* macro, or special form. Why crank out more definitions on the model
of mvbind when we could have a macro do it for us?

To define a macro-defining macro we will often need nested backquotes.
Nested backquotes are notoriously hard to understand. Eventually common cases
will become familiar, but one should not expect to be able to look at an arbitrary
backquoted expression and say what it will yield. It is not a fault in Lisp that
this is so, any more than it is a fault of the notation that one can't just look at
a complicated integral and know what its value will be. The difficulty is in the
problem, not the notation.

However, as we do when finding integrals, we can break up the analysis of
backquotes into small steps, each of which can easily be followed. Suppose we
want to write a macro abbrev, which will alow us to define mvbind just by
saying

1Though the abbreviation can’t be passed to apply or funcall.

16.2 ABBREVIATIONS 215

(abbrev mvbind multiple-value-bind)

Figure 16.1 contains a definition of this macro. Where did it come from? The
definition of such amacro can bederived from asample expansion. One expansion
is:

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,Qargs))

The derivation will be easier if we pull multiple-value-bind from within the
backquote, because we know it will be an argument to the eventual macro. This
yields the equivalent definition

(defmacro mvbind (&rest args)
(let ((name ’multiple-value-bind))
‘(,name ,Qargs)))

Now we take this expression and turn it into a template. We affix a backquote,
and replace the expressions which will vary, with variables.

‘(defmacro ,short (&rest args)
(let ((name ’,long))
‘(,name ,Qargs)))

Thefinal stepistosimplify thisexpressionby substituting > , Long for name within
the inner backquote:

¢ (defmacro ,short (&rest args)
“(,’,long ,@args))

which yields the body of the macro defined in Figure 16.1.
Figure 16.1 also contains abbrevs, for cases where we want to define several
abbreviationsin one shot.

(abbrevs dbind destructuring-bind
mvbind multiple-value-bind
mvsetq multiple-value-setq)

The user of abbrevs doesn't have to insert additional parentheses because
abbrevs calls group (page 47) to group its arguments by twos. It's gener-
aly a good thing for macros to save users from typing logically unnecessary
parentheses, and group will be useful to most such macros.

216 MACRO-DEFINING MACROS

(defmacro propmacro (propname)
‘(defmacro ,propname (obj)
‘(get ,obj ’,’,propname)))

(defmacro propmacros (&rest props)
‘ (progn
,@(mapcar #’(lambda (p) °(propmacro ,p))
props)))

Figure 16.2: Automatic definition of access macros.

16.2 Properties

Lisp offersmany waysto associate propertieswith objects. If theobjectin question
can berepresented as asymbol, one of the most convenient (though least efficient)
ways isto use the symbol’s property list. To describe the fact that an object o has
aproperty p, the value of which is v, we modify the property list of o:

(setf (get 0 p) V)

So to say that balll hascolor red, we say:
(setf (get ’balll ’color) ’red)

If we're going to refer often to some property of objects, we can define a macro
toretrieveit:

(defmacro color (obj)
‘(get ,obj ’color))

and thereafter use color in place of get:

> (color ’balll)
RED

Since macro calls are transparent to setf (see Chapter 12) we can also say:

> (setf (color ’balll) ’green)
GREEN

Such macros have the advantage of hiding the particular way in which the
program represents the color of an object. Property lists are slow; alater version

16.2 PROPERTIES 217

of the program might, for the sake of speed, represent color as a field in a
structure, or an entry in a hash-table. When data is reached through a facade of
macros like color, it becomes easy, even in a comparatively mature program,
to make pervasive changes to the lowest-level code. If a program switches from
using property lists to structures, nothing above the facade of access macroswill
have to be changed; none of the code which looks upon the facade need even be
aware of the rebuilding going on behind it.

For the weight property, we can define a macro similar to the one written for
color:

(defmacro weight (obj)
‘(get ,obj ’weight))

Like the abbreviations in the previous section, the definitions of of color and
weight are nearly identical. Here propmacro (Figure 16.2) can play the same
roleas abbrev did.

A macro-defining macro can be designed by the same process as any other
macro: look at the macro call, then its intended expansion, then figure out how to
transform the former into the latter. We want

(propmacro color)
to expand into

(defmacro color (obj)
‘(get ,obj ’color))

Though this expression is itself a defmacro, we can still make a template of it,
by backquoting it and putting comma’d parameter names in place of instances
of color. As in the previous section, we begin by transforming it so that no
instances of color arewithin existing backquotes:

(defmacro color (obj)
(let ((p ’color))
‘(get ,obj ’,p)))

Then we go ahead and make the templ ate,

‘ (defmacro ,propname (obj)
(let ((p ’,propname))
‘(get ,obj ’,p)))

which simplifiesto

218 MACRO-DEFINING MACROS

‘ (defmacro ,propname (obj)
‘(get ,obj ’,’,propname))

For cases where a group of property-names all have to be defined as macros,
there is propmacros (Figure 16.2), which expands into a series of individual
cals to propmacro. Like abbrevs, this modest piece of code is actualy a
macro-defining-macro-defining macro.

Though this section dealt with property lists, the technique described hereisa
general one. We could use it to define access macros on data stored in any form.

16.3 Anaphoric Macros

Section 14.1 gave definitions of several anaphoric macros. When you use amacro
likeaif or aand, during the evaluation of some argumentsthe symbol it will be
bound to the values returned by other ones. So instead of

(let ((res (complicated-query)))
(if res
(foo res)))

you can use just

(aif (complicated-query)
(foo it))

and instead of

(let ((o (owner x)))
(and o (let ((a (address 0)))
(and a (city a)))))

simply
(aand (owner x) (address it) (city it))

Section 14.1 presented seven anaphoric macros. aif, awhen, awhile, acond,
alambda, ablock, and aand. These seven are by no means the only useful
anaphoric macros of their type. In fact, we can define an anaphoric variant of just
about any Common Lisp function or macro. Many of these macros will be like
mapcon: rarely used, but indispensable when they are needed.

For example, we can define a+ so that, as with aand, it is aways bound to
the value returned by the previous argument. The following function calculates
the cost of dining out in Massachusetts:

16.3 ANAPHORIC MACROS 219

(defmacro a+ (&rest args)
(atexpand args nil))

(defun atexpand (args syms)
(if args
(let ((sym (gensym)))
“(let* ((,sym ,(car args))
(it ,sym))
, (atexpand (cdr args)
(append syms (list sym)))))
“(+ ,0@syms)))

(defmacro alist (&rest args)
(alist-expand args nil))

(defun alist-expand (args syms)
(if args
(let ((sym (gensym)))
“(let* ((,sym ,(car args))
(it ,sym))
, (alist-expand (cdr args)
(append syms (list sym)))))

“(list ,@syms)))

Figure 16.3: Definitions of a+ and alist.

(defun mass-cost (menu-price)
(a+ menu-price (* it .05) (* it 3)))

The Massachusetts Meals Tax is 5%, and residents often calculate the tip by
tripling the tax. By this formula, the total cost of the broiled scrod at Dolphin
Seafood istherefore:

> (mass-cost 7.95)
9.54

but this includes salad and a baked potato.

Themacro a+, definedin Figure 16.3, relieson arecursivefunction, a+expand,
to generate its expansion. The general strategy of a+expand is to cdr down the
list of argumentsin the macro call, generating a series of nested 1et expressions;
each let leavesit boundto adifferent argument, but also bindsadistinct gensym

220 MACRO-DEFINING MACROS

(defmacro defanaph (name &optional calls)
(let ((calls (or calls (pop-symbol name))))
‘(defmacro ,name (&rest args)
(anaphex args (list ’,calls)))))

(defun anaphex (args expr)
(if args
(let ((sym (gensym)))
“(let* ((,sym ,(car args))
(it ,sym))
, (anaphex (cdr args)
(append expr (list sym)))))
expr))

(defun pop-symbol (sym)
(intern (subseq (symbol-name sym) 1)))

Figure 16.4: Automatic definition of anaphoric macros.

to each argument. The expansion function accumulates a list of these gensyms,
and when it reaches the end of the list of argumentsit returns a+ expression with
the gensyms as the arguments. So the expression

(a+ menu-price (x it .05) (x it 3))
yields the macroexpansion:

(let* ((#:g2 menu-price) (it #:g2))
(let* ((#:g3 (* it 0.05)) (it #:g3))
(letx ((#:g4 (x it 3)) (it #:g4))
(+ #:g2 #:g3 #:84))))

Figure 16.3 also contains the definition of the analogousalist:

> (alist 1 (+ 2 it) (+ 2 it))
(1 35)

Once again, the definitions of a+ and alist are almost identical. If we want
to define more macros like them, these too will be mostly duplicate code. Why
not have a program produce it for us? The macro defanaph in Figure 16.4 will
do so. With defanaph, defining a+ and alist isassimple as

16.3 ANAPHORIC MACROS 221

(defanaph a+)
(defanaph alist)

The expansions of a+ and alist so defined will be identical to the expansions
made by the codein Figure 16.3. Themacro-definingmacrodefanaph will create
an anaphoric variant of anything whose arguments are evaluated according to the
normal evaluation rule for functions. That is, defanaph will work for anything
whose arguments are all evaluated, and evaluated left-to-right. So you couldn’t
usethisversion of defanaphtodefineaif or awhile, but you can useit to define
an anaphoric variant of any function.

Asa+ caled a+expand to generate its expansion, def anaph defines a macro
which will call anaphex to do so. The generic expander anaphex differs from
a+expand only in taking as an argument the function name to appear finally in
the expansion. In fact, a+ could now be defined:

(defmacro at+ (&rest args)
(anaphex args ’(+)))

Neither anaphex nor a+expand need have been defined as distinct functions:
anaphex could have been defined with 1abels or alambda within defanaph.
The expansion generators are here broken out as separate functions only for the
sake of clarity.

By default, defanaph determineswhat to call in the expansion by pulling the
first letter (presumably an a) from the front of its argument. (This operation is
performed by pop-symbol.) If the user prefersto specify an alternate name, it
can be given as an optional argument. Although defanaph can build anaphoric
variants of all functions and some macros, it imposes some irksome restrictions;

1. It only worksfor operatorswhose arguments are all evaluated.

2. In the macroexpansion, it is always bound to successive arguments. In
some cases—awhen, for example—we want it to stay bound to the value
of the first argument.

3. It won't work for amacro like setf, which expects a generalized variable
asitsfirst argument.

Let's consider how to remove some of these restrictions. Part of the first problem
can be solved by solving the second. To generate expansionsfor amacrolikeaif,
we need amodified version of anaphex which only replacesthefirst argument in
the macro call:

(defun anaphex2 (op args)
“(let ((it ,(car args)))
(,op it ,@(cdr args))))

222 MACRO-DEFINING MACROS

This nonrecursive version of anaphex doesn’t need to ensure that the macroex-
pansion will bind it to successive arguments, SO it can generate an expansion
which won’t necessarily evaluate al the arguments in the macro call. Only the
first argument must be evaluated, in order to bind it to its value. So aif could
be defined as:

(defmacro aif (&rest args)
(anaphex2 ’if args))

This definition would differ from the original on page 191 only in the point where
it would complain if aif were given the wrong number of arguments; for correct
macro calls, the two generate identical expansions.

Thethird problem, that defanaph won't work with generalized variables, can
be solved by using _f (page 173) in the expansion. Operators like setf can be
handled by avariant of anaphex2 defined as follows:

(defun anaphex3 (op args)
“(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

This expander assumes that the macro call will have one or more arguments, the
first of which will be ageneralized variable. Using it we could define asetf thus:

(defmacro asetf (&rest args)
(anaphex3 ’setf args))

Figure 16.5 shows all three expander functions yoked together under the
control of asingle macro, the new defanaph. The user signals the type of macro
expansion desired with the optional rule keyword parameter, which specifiesthe
evaluation rule to be used for the arguments in the macro call. If this parameter
is:

:all (the default) the macroexpansion will be on the model of alist. All the
argumentsin the macro call will be evaluated, with it always bound to the
value of the previous argument.

:first themacroexpansionwill beonthemodel of aif. Only thefirst argument
will necessarily be evaluated, and it will be bound to its value.

:place the macroexpansion will be on the model of asetf. The first argument
will be treated as a generalized variable, and it will be bound to itsinitial
vaue.

Using the new defanaph, some of the previous examples would be defined as
follows:

16.3 ANAPHORIC MACROS 223

(defmacro defanaph (name &optional &key calls (rule :all))
(let* ((opname (or calls (pop-symbol name)))
(body (case rule
(:all ‘(anaphexl args ’(,opname)))
(:first ‘(anaphex2 ’,opname args))
(:place ‘(anaphex3 ’,opname args)))))
‘(defmacro ,name (&rest args)
,body)))

(defun anaphexl (args call)
(if args
(let ((sym (gensym)))
“(let* ((,sym ,(car args))
(it ,sym))
, (anaphexl (cdr args)
(append call (list sym)))))

call))

(defun anaphex2 (op args)
“(let ((it ,(car args))) (,op it ,@(cdr args))))

(defun anaphex3 (op args)
“(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

Figure 16.5: More general defanaph.

(defanaph alist)
(defanaph aif :rule :first)
(defanaph asetf :rule :place)

Oneof theadvantagesof asetf isthat it makesit possibleto definealargeclass
of macros on generalized variables without worrying about multiple evaluation.
For example, we could define incf as.

(defmacro incf (place &optional (val 1))
‘(asetf ,place (+ it ,val)))

and, say, pull (page 173) as.

(defmacro pull (obj place &rest args)
‘(asetf ,place (delete ,obj it ,@args)))

17

Read-M acros

The three big moments in a Lisp expression’s life are read-time, compile-time,
and runtime. Functions are in control at runtime. Macros give us a chance to
perform transformations on programs at compile-time. This chapter discusses
read-macros, which do their work at read-time.

17.1 Macro Characters

In keeping with the general philosophy of Lisp, you have a great deal of control
over the reader. Its behavior is controlled by properties and variables that can
al be changed on the fly. The reader can be programmed at several levels. The
easiest way to changeits behavior is by defining new macro characters.

A macro character is acharacter which exacts special treatment fromthe Lisp
reader. A lower-case a, for example, is ordinarily handled just like a lower-case
b, but aleft parenthesisis something different; it tellsLisp to beginreading alist.
Each such character has afunction associated with it that tellsthe Lisp reader what
to do when the character is encountered. You can change the function associated
with an existing macro character, or define new macro characters of your own.

The built-in function set-macro-character provides one way to define
read-macros. It takes a character and a function, and thereafter when read
encountersthe character, it returnsthe result of calling the function.

One of the oldest read-macrosin Lisp is ’, the quote. You could do without
> by adways writing (quote a) instead of ’a, but this would be tiresome and
would make your code harder to read. The quote read-macro makesit possibleto
use ’a as an abbreviation for (quote a). We could define it asin Figure 17.1.

224

171 MACRO CHARACTERS 225

(set-macro-character #\’
#’ (lambda (stream char)
(1ist ’quote (read stream t nil t))))

Figure 17.1: Possible definition of .

When read encounters an instance of * in anormal context (e.g. notin "a’b" or
la’bl), it will return the result of calling this function on the current stream and
character. (The function ignores this second parameter, which will always be the
guote character.) So when read sees ’ a, it will return (quote a).

The last three arguments to read control respectively whether encountering
an end-of-file should cause an error, what value to return otherwise, and whether
thecall to read occurswithinacall to read. Innearly all read-macros, the second
and fourth arguments should be t, and the third argument is therefore irrel evant.

Read-macros and ordinary macros are both functions underneath. And like
the functionsthat generate macro expansions, the functions associated with macro
characters shouldn’t have side-effects, except on the stream from which they read.
Common Lisp explicitly makes no guarantees about when, or how often, the
function associated with aread-macro will be called. (See cLTL2, p. 543.)

Macros and read-macros see your program at different stages. Macros get
hold of the program when it has already been parsed into Lisp objects by the
reader, and read-macros operate on a program while it is still text. However, by
invoking read onthistext, aread-macro can, if it chooses, get parsed Lisp objects
aswell. Thus read-macros are at least as powerful as ordinary macros.

Indeed, read-macros are more powerful in at least two ways. A read-macro
affects everything read by Lisp, while a macro will only be expanded in code.
And since read-macros generally call read recursively, an expression like

’la

becomes

(quote (quote a))

whereasif we had tried to define an abbreviation for quote using anormal macro,

(defmacro q (obj)
‘(quote ,0bj))

226 READ-MACROS

(set-dispatch-macro-character #\# #\7
#’ (lambda (stream charl char2)
‘#’(lambda (&rest , (gensym))
, (read stream t nil t))))

Figure 17.2: A read-macro for constant functions.

it would work in isolation,

> (eq ’a (q a))
T

but not when nested. For example,
(q (q a))
would expand into

(quote (q a))

17.2 Dispatching Macro Characters

The sharp-quote, like other read-macros beginning with #, is an example of a
subspecies called dispatching read-macros. These appear as two characters, the
first of whichiscalled the dispatching character. The purposeof such read-macros
is ssimply to make the most of the AsciI character set; one can only have so many
one-character read-macros.

You can (with make-dispatch-macro-character) define your own dis-
patching macro characters, but since # is already defined as one, you may as well
use it. Some combinations beginning with # are explicitly reserved for your use;
others are availablein that they do not yet have a predefined meaning in Common
Lisp. The completelist appearsin CLTL2, p. 531.

New dispatching macro character combinations can be defined by calling
the function set-dispatch-macro-character, like set-macro-character
except that it takes two character arguments. One of the combinations reserved
to the programmer is #7. Figure 17.2 shows how to define this combination as
a read-macro for constant functions. Now #72 will be read as a function which
takes any number of arguments and returns 2. For example:

> (mapcar #72 ’(a b c))
(2 22

17.3 DELIMITERS 227

(set-macro-character #\] (get-macro-character #\)))

(set-dispatch-macro-character #\# #\[
#’(lambda (stream charl char2)
(let ((accum nil)
(pair (read-delimited-list #\] stream t)))
(do ((i (ceiling (car pair)) (1+ i)))
((> i (floor (cadr pair)))
(1ist ’quote (nreverse accum)))
(push i accum)))))

Figure 17.3: A read-macro defining delimiters.

This example makes the new operator ook rather pointless, but in programs that
use a lot of functional arguments, constant functions are often needed. In fact,
some dialects provide a built-in function called always for defining them.

Note that it is perfectly ok to use macro characters in the definition of this
macro character: aswith any Lisp expression, they disappear when the definition
isread. It isalso fine to use macro-characters after the #7. The definition of #7
calls read, so macro-characterslike > and #° behave as usua:

> (eq (funcall #7’a) ’a)

T

> (eq (funcall #7#’o0ddp) (symbol-function ’oddp))
T

17.3 Delimiters

After smple macro characters, the most commonly defined macro characters
are list delimiters. Another character combination reserved for the user is #[.
Figure 17.3 gives an example of how this character might be defined as a more
elaborate kind of left parenthesis. It defines an expression of theform #[x y] to
read as alist of all the integers between x and y, inclusive:

> #[2 7]
(234567)

The only new thing about this read-macroisthecall to read-delimited-1ist,
abuilt-in function provided just for such cases. Itsfirst argument is the character
to treat asthe end of thelist. For] to be recognized as a delimiter, it must first be
given thisrole, hencethe preliminary call to set-macro-character.

228 READ-MACROS

(defmacro defdelim (left right parms &body body)
‘(ddfn ,left ,right #’(lambda ,parms ,@body)))

(let ((rpar (get-macro-character #\))))
(defun ddfn (left right fn)
(set-macro-character right rpar)
(set-dispatch-macro-character #\# left
#’(lambda (stream charl char2)
(apply fn
(read-delimited-list right stream t))))))

Figure 17.4: A macro for defining delimiter read-macros.

Most potential delimiter read-macro definitions will duplicate a lot of the
code in Figure 17.3. A macro could put a more abstract interface on al this
machinery. Figure 17.4 shows how we might define autility for defining delimiter
read-macros. The defdelim macro takes two characters, a parameter list, and a
body of code. The parameter list and the body of codeimplicitly defineafunction.
A call to defdelim definesthe first character as a dispatching read-macro which
reads up to the second, then returns the result of applying this function to what it
read.

Incidentally, thebody of thefunctionin Figure 17.3 a so criesout for autility—
for onewe haveaready defined, in fact: mapa-b, from page54. Usingdefdelim
and mapa-b, the read-macro defined in Figure 17.3 could now be written:

(defdelim #\[#\] (x y)
(1ist ’quote (mapa-b #’identity (ceiling x) (floor y))))

Another useful delimiter read-macrowould be onefor functional composition.
Section 5.4 defined an operator for functional composition:;

> (let ((f1 (compose #’list #’1+))
(f2 #’ (lambda (x) (list (1+ x)))))
(equal (funcall f1 7) (funcall £2 7)))
T

When we are composing built-in functions like 1ist and 1+, there is no reason
to wait until runtime to evaluate the call to compose. Section 5.7 suggested an
alternative; by prefixing the sharp-dot read-macro to a compose expression,

#.(compose #’list #’1+)

17.4 WHEN WHAT HAPPENS 229

(defdelim #\{ #\} (&rest args)
“(fn (compose ,Q@args)))

Figure 17.5: A read-macro for functional composition.

we could cause it to be evaluated at read-time.

Here we show a similar but cleaner solution. The read-macro in Figure 17.5
defines an expression of the form #{f , f, ... f,} to read as the composition of
fi,fs, ..., f, Thus

> (funcall #{list 1+} 7)
(8)

It works by generating a call to £n (page 202), which will create the function at
compile-time.

174 When What Happens

Finally, it might beuseful to clear up apossibly confusingissue. If read-macrosare
invoked before ordinary macros, how isit that macros can expand into expressions
which contain read-macros? For example, the macro:

(defmacro quotable ()
’(list ’able))

generates an expansion with a quote in it. Or doesit? In fact, what happensis
that both quotesin the definition of this macro are expanded when the defmacro
expression isread, yielding

(defmacro quotable ()
(quote (list (quote able))))

Usually, there is no harm in acting as if macroexpansions could contain read-
macros, because the definition of a read-macro will not (or should not) change
between read-time and compile-time.

18

Destructuring

Destructuring is a generalization of assignment. The operators setq and setf
do assignments to individual variables. Destructuring combines assignment with
access: instead of giving asingle variable as the first argument, we give a pattern
of variables, which are each assigned the value occurring in the corresponding
position in some structure.

18.1 Destructuringon Lists

Asof cLTL2, Common Lisp includes anew macro called destructuring-bind.
This macro was briefly introduced in Chapter 7. Here we consider it in more
detail. Supposethat 1st isalist of three elements, and we want to bind x to the
first, y to the second, and z to the third. In raw cLTL1 Common Lisp, we would
have had to say:

(let ((x (first 1st))
(y (second 1st))
(z (third 1st)))

)

With the new macro we can say instead

(destructuring-bind (x y z) lst
)

230

18.2 OTHER STRUCTURES 231

which is not only shorter, but clearer as well. Readers grasp visual cues much
faster than textual ones. In the latter form we are shown the rel ationship between
x, y, and z; in the former, we have to infer it.

If such asimple caseis made clearer by the use of destructuring, imagine the
improvement in more complex ones. Thefirstargumenttodestructuring-bind
can be an arbitrarily complex tree. Imagine

(destructuring-bind ((first last) (month day year) . notes)
birthday
L)

written using let and the list access functions. Which raises another point:
destructuring makes it easier to write programs as well as easier to read them.

Destructuringdid existincLTL1 Common Lisp. If the patternsin the examples
abovelook familiar, it's because they have the sameform as macro parameter lists.
In fact, destructuring-bind is the code used to take apart macro argument
lists, now sold separately. You can put anything in the pattern that you would put
in a macro parameter list, with one unimportant exception (the &environment
keyword).

Establishing bindings en masse is an attractive idea. The following sections
describe several variations upon this theme.

18.2 Other Structures

Thereisno reasontolimit destructuringtolists. Any complex objectisacandidate
for it. This section shows how to write macros like destructuring-bind for
other kinds of objects.

The natural next step isto handle sequences generally. Figure 18.1 contains a
macro called dbind, which resembles destructuring-bind, but works for any
kind of sequence. The second argument can be alist, avector, or any combination
thereof:

> (dbind (a b c) #(1 2 3)
(list a b ¢))

(123)

> (dbind (a (b c) d) (1 #(2 3) 4)
(list a b ¢c d))

(123 4)

> (dbind (a (b . c¢c) &rest d) (1 "fribble" 2 3 4)
(list a b ¢c 4))

(1 #\f "ribble" (2 3 4))

232 DESTRUCTURING

(defmacro dbind (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))
, (dbind-ex (destruc pat gseq #’atom) body))))

(defun destruc (pat seq &optional (atom? #’atom) (n 0))
(if (null pat)
nil
(let ((rest (cond ((funcall atom? pat) pat)
((eq (car pat) ’&rest) (cadr pat))
((eq (car pat) ’&body) (cadr pat))
(t nil))))
(if rest
“((,rest (subseq ,seq ,n)))
(let ((p (car pat))
(rec (destruc (cdr pat) seq atom? (1+ n))))
(if (funcall atom? p)
(cons ‘(,p (elt ,seq ,n))
rec)
(let ((var (gensym)))
(cons (cons ‘(,var (elt ,seq ,n))
(destruc p var atom?))

rec))))))))

(defun dbind-ex (binds body)
(if (null binds)
‘(progn ,@body)
‘(let ,(mapcar #’(lambda (b)
(if (consp (car b))
(car b)
b))
binds)
, (dbind-ex (mapcan #’(lambda (b)
(if (comsp (car b))
(cdr b)))
binds)
body))))

Figure 18.1: General sequence destructuring operator.

18.2 OTHER STRUCTURES 233

The# (read-macroisfor representing vectors, and #\ for representing characters.
Since"abc" =#(#\a #\b #\c),thefirstelement of "fribble" isthe character
#\f. For the sake of simplicity, dbind supports only the &rest and &body
keywords.

Compared to most of the macros seen so far, dbind isbig. It'sworth studying
the implementation of this macro, not only to understand how it works, but also
because it embodies a general lesson about Lisp programming. As section 3.4
mentioned, Lisp programs may intentionally be written in a way that will make
them easy to test. In most code, we have to balance this desire against the need
for speed. Fortunately, as Section 7.8 explained, speed is not so important in
expander code. When writing code that generates macroexpansions, we can make
life easier for ourselves. The expansion of dbind is generated by two functions,
destruc and dbind-ex. Perhaps they both could be combined into one function
which would do everything in a single pass. But why bother? As two separate
functions, they will be easier to test. Why trade this advantage for speed we don’t
need?

Thefirst function, destruc, traversesthe pattern and associates each variable
with the location of the corresponding object at runtime:

> (destruc ’(a b c) ’seq #’atom)
((A (ELT SEQ 0)) (B (ELT SEQ 1)) (C (ELT SEQ 2)))

The optional third argument is the predicate used to distinguish pattern structure
from pattern content.

To make access more efficient, a new variable (a gensym) will be bound to
each subsequence:

> (destruc ’(a (b . c) &rest d) ’seq)

((A (ELT SEQ 0))
((#:G2 (ELT SEQ 1)) (B (ELT #:G2 0)) (C (SUBSEQ #:G2 1)))
(D (SUBSEQR SEQ 2)))

The output of destruc is sent to dbind-ex, which generates the bulk of the
macroexpansion. It trangates the tree produced by destruc into a nested series
of lets:

> (dbind-ex (destruc ’(a (b . c) &rest d) ’seq) ’(body))
(LET ((A (ELT SEQ 0))
(#:G4 (ELT SEQ 1))
(D (SUBSEQ SEQ 2)))
(LET ((B (ELT #:G4 0))
(C (SUBSEQ #:G4 1)))
(PROGN BODY)))

234 DESTRUCTURING

(defmacro with-matrix (pats ar &body body)
(let ((gar (gensym)))
“(let ((,gar ,ar))
(let ,(Qet ((row -1))
(mapcan
#’ (lambda (pat)
(incf row)
(setq col -1)
(mapcar #’(lambda (p)
‘(,p (aref ,gar
,TOW
, (incf col))))
pat))
pats))
,@body))))

(defmacro with-array (pat ar &body body)
(let ((gar (gensym)))
‘(let ((,gar ,ar))
(let , (mapcar #’(lambda (p)
“(,(car p) (aref ,gar ,@(cdr p))))
pat)
,@body))))

Figure 18.2: Destructuring on arrays.

Notethat dbind, like destructuring-bind, assumesthat it will find all the
list structureit islooking for. Left-over variables are not simply boundtonil, as
withmultiple-value-bind. If the sequence given at runtime does not have al
the expected elements, destructuring operators generate an error:

> (dbind (a b ¢) (list 1 2))
>>Error: 2 is not a valid index for the sequence (1 2)

What other objects have internal structure? There are arrays generally, which
differ fromvectorsin having morethan onedimension. If wedefineadestructuring
macro for arrays, how do we represent the pattern? For two-dimensional arrays,
itisstill practical to use alist. Figure 18.2 contains a macro, with-matrix, for
destructuring on two-dimensional arrays.

18.2 OTHER STRUCTURES 235

(defmacro with-struct ((name . fields) struct &body body)
(let ((gs (gensym)))
‘(let ((,gs ,struct))
(let , (mapcar #’(lambda (f)
“(,f (,(symb name f) ,gs)))
fields)
»@body))))

Figure 18.3: Destructuring on structures.

> (setq ar (make-array ’(3 3)))
#<Simple-Array T (3 3) C2D39E>
> (for (r 0 2)
(for (c 0 2)
(setf (aref ar r ¢) (+ (x r 10) c))))

NIL
> (with-matrix ((a b c)
(d e f)
(g h 1)) ar

(list abcdefghi))
(01210 11 12 20 21 22)

For large arrays or those with dimension 3 or higher, we want a different kind
of approach. We are not likely to want to bind variablesto each element of alarge
array. It will be more practical to make the pattern a sparse representation of the
array—containing variables for only afew elements, plus coordinates to identify
them. The second macro in Figure 18.2 is built on this principle. Here we use it
to get the diagonal of our previous array:

> (with-array ((@a 0 0) (d1 1) (i 2 2)) ar
(values a d i))

0

11

22

With this new macro we have begun to move away from patterns whose
elements must occur in afixed order. We can make asimilar sort of macro to bind
variables to fields in structures built by defstruct. Such amacro is defined in
Figure 18.3. Thefirst argument in the pattern is taken to be the prefix associated
with the structure, and the rest are field names. To build access calls, this macro
uses symb (page 58).

236 DESTRUCTURING

> (defstruct visitor name title firm)

VISITOR

> (setq theo (make-visitor :name "Theodebert"
:title ’king
:firm ’franks))

#S(VISITOR NAME "Theodebert" TITLE KING FIRM FRANKS)

> (with-struct (visitor- name firm title) theo

(list name firm title))
("Theodebert" FRANKS KING)

18.3 Reference

CLos brings with it a macro for destructuring on instances. Suppose tree is a
classwiththreeslots, species, age, andheight, andthatmy-tree isaninstance
of tree. Within

(with-slots (species age height) my-tree
)

we can refer to the lots of my-tree asif they were ordinary variables. Withinthe
body of thewith-slots, the symbol height refersto the height slot. It isnot
simply bound to the value stored there, but refers to the slot, so that if we write:

(setq height 72)

thentheheight dot of my-tree will begiventhe value 72. Thismacro works by
definingheight asasymbol-macro (Section 7.11) which expandsinto aslot refer-
ence. Infact, it was to support macroslikewith-slots that symbol-macrolet
was added to Common Lisp.

Whether or not with-slots isreally a destructuring macro, it has the same
role pragmatically as destructuring-bind. AS conventional destructuring is
to call-by-value, this new kind is to call-by-name. Whatever we call it, it looksto
be useful. What other macros can we define on the same principle?

We can create a call-by-nameversion of any destructuring macro by making it
expand into a symbol-macrolet rather thanalet. Figure 18.4 shows aversion
of dbind modified to behavelikewith-slots. We can usewith-places aswe
do dbind:

> (with-places (a b c) #(1 2 3)
(list a b ¢))
(12 3)

18.3 REFERENCE 237

(defmacro with-places (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))
, (wplac-ex (destruc pat gseq #’atom) body))))

(defun wplac-ex (binds body)
(if (null binds)
‘ (progn ,@body)
¢ (symbol-macrolet , (mapcar #’(lambda (b)
(if (comnsp (car b))
(car b)
b))
binds)
, (wplac-ex (mapcan #’(lambda (b)
(if (comsp (car b))
(cdr b)))
binds)
body))))

Figure 18.4: Reference destructuring on sequences.

But the new macro also gives usthe option to setf positionsin sequences, aswe
dodlotsinwith-slots:

> (let ((Ist ’(1 (2 3) 4)))
(with-places (a (b . ¢c) d) 1lst
(setf a ’uno)
(setf ¢ ’(tre)))
1st)
(UNO (2 TRE) 4)

Asinawith-slots, thevariablesnow refer to the corresponding locationsin the
structure. Thereis one important difference, however: you must use setf rather
than setq to set these pseudo-variables. The with-slots macro must invoke
a code-walker (page 273) to transform setqs into setfs within its body. Here,
writing a code-walker would be alot of code for a small refinement.

If with-placesismoregenera than dbind, why not just useit all the time?
While dbind associates a variable with avalue, with-places associatesit with
aset of instructionsfor finding avalue. Every referencerequiresalookup. Where
dbind would bind ¢ to the value of (elt x 2), with-places will make c a
symbol-macro that expandsinto (elt x 2). Soif c isevaluated n timesin the

238 DESTRUCTURING

body, that will entail ncallstoelt. Unlessyouactually want to setf thevariables
created by destructuring, dbind will be faster.

The definition of with-places isonly slightly changed from that of dbind
(Figure 18.1). Within wplac-ex (formerly dbind-ex) the let has become
a symbol-macrolet. By similar dterations, we could make a call-by-name
version of any normal destructuring macro.

18.4 Matching

As destructuring is a generalization of assignment, pattern-matching is a gener-
alization of destructuring. The term “ pattern-matching” has many senses. In this
context, it means comparing two structures, possibly containing variables, to see
if there is some way of assigning values to the variables which makes the two
equal. For example, if 7x and 7y are variables, then the two lists

(p 7x ?y ¢ 7x)
(p a2 bc a)

match when 7x = a and 7y =b. And thelists

(p ?7x b 7y a)
(p?y b c a)

match when 7x = 7y = c.

Suppose a program works by exchanging messages with some outside source.
To respond to a message, the program has to tell what kind of message it is, and
also to extract its specific content. With a matching operator we can combine the
two steps.

To be able to write such an operator we have to invent some way of distin-
guishing variables. We can't just say that all symbols are variables, because we
will want symbols to occur as arguments within patterns. Here we will say that
a pattern variable is a symbol beginning with a question mark. If it becomesin-
convenient, this convention could be changed simply by redefining the predicate
var?.

Figure 18.5 contains a pattern-matching function similar to ones that appear
in several introductionsto Lisp. We givematch two lists, and if they can be made
to match, we will get back alist showing how:

> (match (pabca) ’(p ?x 7y ¢ ?x))
((?y . B) (?X . A))
T

18.4 MATCHING 239

(defun match (x y &optional binds)
(acond2

(Cor (eql x y) (eql x ’_) (eql y ’_)) (values binds t))
((binding x binds) (match it y binds))
((binding y binds) (match x it binds))
((varsym? x) (values (cons (cons x y) binds) t))
((varsym? y) (values (cons (cons y x) binds) t))
((and (consp x) (consp y) (match (car x) (car y) binds))
(match (cdr x) (cdr y) it))
(t (values nil nil))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\7)))

(defun binding (x binds)
(labels ((recbind (x binds)
(aif (assoc x binds)
(or (recbind (cdr it) binds)
it))))
(let ((b (recbind x binds)))
(values (cdr b) b))))

Figure 18.5: Matching function.

> (match (p ?x b 7y a) ’(p ?y b c a))
(7Y . C) (?X . 7Y))

T

> (match ’(a b c) ’(a a a))

NIL

NIL

Asmatch compares its arguments element by element, it builds up assignments
of values to variables, caled bindings, in the parameter binds. If the match is
successful, match returns the bindings generated, otherwiseit returnsnil. Since
not all successful matches generate any bindings, match, like gethash, returnsa
second value to indicate whether the match succeeded or failed:

> (match ’(p 7x) ’(p ?x))
NIL
T

240 DESTRUCTURING

(defmacro if-match (pat seq then &optional else)
‘(aif2 (match ’,pat ,seq)
(let , (mapcar #’(lambda (v)
“(,v (binding ’,v it)))
(vars-in then #’atom))
,then)
,else))

(defun vars-in (expr &optional (atom? #’atom))
(if (funcall atom? expr)
(if (var? expr) (list expr))
(union (vars-in (car expr) atom?)
(vars-in (cdr expr) atom?))))

(defun var? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\7)))

Figure 18.6: Slow matching operator.

When match returnsnil and t as above, it indicates a successful match which
yielded no bindings.

LikeProlog, match treats _ (underscore) asawild-card. It matcheseverything,
and has no effect on the bindings:

> (match ’(a ?x b) >(_ 1)
(?x . 1)
T

Given match, it is easy to write a pattern-matching version of dbind. Fig-
ure 18.6 contains a macro called if-match. Like dbind, itsfirst two arguments
are apattern and a sequence, and it establishes bindings by comparing the pattern
with the sequence. However, instead of abody it hastwo morearguments: athen
clause to be evaluated, with new bindings, if the match succeeds; and an else
clause to be evaluated if the match fails. Here is a simple function which uses
if-match:

(defun abab (seq)
(if-match (7x 7y 7x 7y) seq
(values ?x 7y)
nil))

If thematch succeeds, it will establishvaluesfor 7x and 7y, whichwill bereturned:

18.4 MATCHING 241

> (abab ’(hi ho hi ho))
HI
HO

The function vars-in returns all the pattern variables in an expression. It
calsvar? to test if somethingisavariable. At the moment, var? isidentica to
varsym? (Figure 18.5), which isused to detect variablesin binding lists. We have
two distinct functionsin case we want to use different representations for the two
kinds of variables.

As defined in Figure 18.6, if-match is short, but not very efficient. 1t does
too much work at runtime. We traverse both sequences at runtime, even though
thefirst isknown at compile-time. Worse still, during the process of matching, we
cons up lists to hold the variable bindings. If we take advantage of information
known at compile-time, we can write aversion of if-match which performsno
unnecessary comparisons, and doesn’'t cons at all.

If one of the sequencesis known at compile-time, and only that one contains
variables, then we can go about things differently. In a call to match, either
argument could contain variables. By restricting variables to the first argument
of if-match, we make it possible to tell at compile-time which variables will
be involved in the match. Then instead of creating lists of variable bindings, we
could keep the values of variablesin the variables themselves.

The new version of 1f-match appearsin Figure 18.7 and 18.8. When we can
predict what code would be evaluated at runtime, we can simply generate it at
compile-time. Here, instead of expanding into acall to match, we generate code
which performsjust the right comparisons.

If we are going to use the variable 7x to contain the binding of 7x, how do we
represent a variable for which no binding has yet been established by the match?
Herewewill indicate that a pattern variableis unbound by binding it to agensym.
So if-match begins by generating code which will bind all the variablesin the
pattern to gensyms. In this case, instead of expanding into awith-gensyms, it's
safe to make the gensyms once at compile-time and insert them directly into the
expansion.

The rest of the expansion is generated by pat-match. This macro takes
the same arguments as if-match; the only difference is that it establishes no
new bindings for pattern variables. In some situations this is an advantage, and
Chapter 19 will use pat-match as an operator in its own right.

In the new matching operator, the distinction between pattern content and
pattern structure will be defined by the function simple?. If we want to be able
to use quoted literalsin patterns, the destructuring code (and vars-in) haveto be
told not to go inside lists whose first element is quote. With the new matching
operator, we will be able to use lists as pattern elements, simply by quoting them.

242 DESTRUCTURING

(defmacro if-match (pat seq then &optional else)
‘(let , (mapcar #’(lambda (v) ‘(,v ’,(gensym)))
(vars-in pat #’simple?))
(pat-match ,pat ,seq ,then ,else)))

(defmacro pat-match (pat seq then else)
(if (simple? pat)
(matchl ‘((,pat ,seq)) then else)
(with-gensyms (gseq gelse)
‘(labels ((,gelse () ,else))
, (gen-match (cons (list gseq seq)
(destruc pat gseq #’simple?))

then
“(,gelse))))))

(defun simple? (x) (or (atom x) (eq (car x) ’quote)))

(defun gen-match (refs then else)
(if (null refs)
then
(let ((then (gen-match (cdr refs) then else)))
(if (simple? (caar refs))
(matchl refs then else)
(gen-match (car refs) then else)))))

Figure 18.7: Fast matching operator.

Like dbind, pat-match calls destruc to get a list of the calls that will
take apart its argument at runtime. This list is passed on to gen-match, which
recursively generates matching code for nested patterns, and thence to matchi,
which generates match code for each leaf of the pattern tree.

Most of the code which will appear in the expansion of an if-match comes
frommatchi, whichis shown in Figure 18.8. Thisfunction considersfour cases.
If the pattern argument isagensym, then it isone of theinvisible variables created
by destruc to hold sublists, and all we need to do at runtimeistest that it hasthe
right length. If the pattern element is awildcard (), no code need be generated.
If the pattern element is a variable, match1 generates code to match it against,
or set it to, the corresponding part of the sequence given at runtime. Otherwise,
the pattern element is taken to be a literal value, and match1 generates code to
compare it with the corresponding part of the sequence.

18.4 MATCHING

243

(defun matchl (refs then else)
(dbind ((pat expr) . rest) refs
(cond ((gensym? pat)
‘(let ((,pat ,expr))
(if (and (typep ,pat ’sequence)

, (length-test pat rest))
,then

,else)))
((eq pat ’_) then)
((var? pat)
(let ((ge (gensym)))
‘(let ((,ge ,expr))
(if (or (gensym? ,pat) (equal ,pat ,ge))
(let ((,pat ,ge)) ,then)
,else))))
(t “(if (equal ,pat ,expr) ,then ,else)))))

(defun gensym? (s)
(and (symbolp s) (not (symbol-package s))))

(defun length-test (pat rest)
(let ((fin (caadar (last rest))))
(if (or (comsp fin) (eq fin ’elt))
‘(= (length ,pat) ,(length rest))
‘(> (length ,pat) , (- (length rest) 2)))))

Figure 18.8: Fast matching operator (continued).

Let's look at examples of how some parts of the expansion are generated.

Suppose we begin with

(if-match (7x ’a) seq
(print 7x)
nil)

The pattern will be passed to destruc, with some gensym (call it g for legibility)
to represent the sequence:

(destruc ’(?x ’a) ’g #’simple?)

yielding:

244 DESTRUCTURING

((7x (elt g 0)) ((quote a) (elt g 1)))

On the front of thislist we cons (g seq):
((g seq) (7x (elt g 0)) ((quote a) (elt g 1)))

and send thewholething to gen-match. Likethe naiveimplementation of Length
(page 22), gen-match first recurses all the way to the end of the list, and then
builds its return value on the way back up. When it has run out of elements,
gen-match returnsits then argument, which will be 7x. On the way back up the
recursion, thisreturn value will be passed as the then argument tomatch1. Now
we will have acdl like:

(matchl ’(((quote a) (elt g 1))) ’(print ?x) ’(elsefunction))
yielding:

(if (equal (quote a) (elt g 1))
(print 7x)
(else function))

Thiswill in turn become the then argument to another call tomatchi, the value
of which will become the then argument of the last call to matchi. The full
expansion of this if-match isshown in Figure 18.9.

In this expansion gensyms are used in two completely unrelated ways. The
variables used to hold parts of the tree at runtime have gensymed names, in order
to avoid capture. And the variable 7x isinitially bound to a gensym, to indicate
that it hasn’t yet been assigned a value by matching.

Inthe new if-match, the pattern elements are now evaluated instead of being
implicitly quoted. This meansthat Lisp variables can be used in patterns, as well
as quoted expressions:

> (let ((n 3))
(if-match (?x n ’n ’(a b)) (1 3 n (a b))
7x))
1

Two further improvements appear because the new version calls destruc (Fig-
ure18.1). The pattern can now contain &rest or &body keywords (match doesn’t
bother with those). And because destruc uses the generic sequence operators
elt and subseq, the new if-match will work for any kind of sequence. If abab
is defined with the new version, it can be used a so on vectors and strings:

18.4 MATCHING 245

(if-match (7x ’a) seq
(print 7x))

expandsinto:

(let ((7x ’#:g1))
(labels ((#:g3 nil nil))
(let ((#:g2 seq))
(if (and (typep #:g2 ’sequence)
(= (length #:g2) 2))
(let ((#:g5 (elt #:g2 0)))
(if (or (gensym? x) (equal ?x #:g5))
(let ((7x #:g5))
(if (equal ’a (elt #:g2 1))
(print 7x)
(#:83)))
(#:£3)))
(#:g23)))))

Figure 18.9: Expansion of an if-match.

> (abab "abab")
#\a

#\b

> (abab #(1 2 1 2))
1

2

In fact, patterns can be as complex as patternsto dbind:

> (if-match (?x (1 . ?y) . ?x) ’((a b) #(1 2 3) a b)
(values 7x 7y))

(A B)

#(2 3)

Notice that, in the second return value, the elements of the vector are displayed.
To have vectors printed this way, set *print-array* tot.

In this chapter we are beginning to cross the line into a new kind of pro-
gramming. We began with simple macros for destructuring. In the final version
of if-match we have something that looks more like its own language. The
remaining chapters describe awhole class of programswhich operate on the same
philosophy.

19

A Query Compiler

Some of the macros defined in the preceding chapter were large ones. To generate
its expansion, if-match needed al the code in Figures 18.7 and 18.8, plus
destruc from Figure 18.1. Macros of this size lead naturally to our last topic,
embedded languages. If small macros are extensionsto Lisp, large macros define
sub-languages within it—possibly with their own syntax or control structure. We
saw the beginning of thisin if-match, which had its own distinct representation
for variables.

A language implemented within Lisp is called an embedded language. Like
“utility,” the term is not a precisely defined one; if-match probably still counts
asautility, but it is getting close to the borderline.

An embedded language is not alike alanguage implemented by a traditional
compiler or interpreter. It isimplemented within some existing language, usually
by transformation. There need be no barrier between the base language and the
extension: it should bepossibletointerminglethetwofreely. For theimplementor,
this can mean a huge saving of effort. You can embed just what you need, and for
the rest, use the base language.

Transformation, in Lisp, suggests macros. To some extent, you could imple-
ment embedded |anguages with preprocessors. But preprocessorsusually operate
only on text, while macros take advantage of a unique property of Lisp: between
the reader and the compiler, your Lisp program is represented as lists of Lisp
objects. Transformations done at this stage can be much smarter.

Thebest-known exampl e of an embedded languageis cLos, the Common Lisp
Object System. If youwanted to make an object-oriented version of aconventional
language, you would have to write a new compiler. Not so in Lisp. Tuning the

246

19.1 THE DATABASE 247

compiler will make cLos run faster, but in principle the compiler doesn’'t have to
be changed at all. The whole thing can be writtenin Lisp.

The remaining chapters give examples of embedded languages. This chapter
describes how to embed in Lisp a program to answer queries on adatabase. (You
will notice in this program a certain family resemblance to if-match.) Thefirst
sections describe how to write a system which interprets queries. This programis
then reimplemented as a query compiler—in essence, as one big macro—making
it both more efficient and better integrated with Lisp.

19.1 The Database

For our present purposes, the format of the database doesn’t matter very much.
Here, for the sake of convenience, wewill storeinformationin lists. For example,
we will represent the fact that Joshua Reynolds was an English painter who lived
from 1723 to 1792 by:

(painter reynolds joshua english)
(dates reynolds 1723 1792)

Thereis no canonical way of reducing information to lists. We could just as well
have used one big list:

(painter reynolds joshua 1723 1792 english)

It isup to the user to decide how to organize database entries. Theonly restriction
isthat the entries (facts) will be indexed under their first element (the predicate).
Within those bounds, any consistent form will do, although some forms might
make for faster queries than others.

Any database system needs at least two operations. one for modifying the
database, and onefor examiningit. The code shown in Figure 19.1 providesthese
operationsin abasic form. A database is represented as a hash-table filled with
lists of facts, hashed according to their predicate.

Although the database functions defined in Figure 19.1 support multiple
databases, they al default to operations on *default-db*. As with packages
in Common Lisp, programs which don’t need multiple databases need not even
mention them. In this chapter al the exampleswill just use the *default-dbx.

We initialize the system by calling clear-db, which empties the current
database. We can look up facts with a given predicate with db-query, and insert
new facts into a database entry with db-push. As explained in Section 12.1, a
macro which expands into an invertible reference will itself be invertible. Since
db-query is defined this way, we can simply push new facts onto the db-query
of their predicates. In Common Lisp, hash-table entries are initialized to nil

248 A QUERY COMPILER

(defun make-db (&optional (size 100))
(make-hash-table :size size))

(defvar *default-db* (make-db))

(defun clear-db (&optional (db *default-dbx))
(clrhash db))

(defmacro db-query (key &optional (db ’*default-dbx*))
‘(gethash ,key ,db))

(defun db-push (key val &optional (db *default-dbx))
(push val (db-query key db)))

(defmacro fact (pred &rest args)
‘(progn (db-push ’,pred ’,args)
’,args))

Figure 19.1: Basic database functions.

unless specified otherwise, so any key initially has an empty list associated with
it. Finally, the macro fact adds anew fact to the database.

> (fact painter reynolds joshua english)
(REYNOLDS JOSHUA ENGLISH)
> (fact painter canale antonio venetian)
(CANALE ANTONIO VENETIAN)
> (db-query ’painter)
((CANALE ANTONIO VENETIAN)
(REYNOLDS JOSHUA ENGLISH))
T

The t returned as the second value by db-query appears because db-query
expands into a gethash, which returns as its second value a flag to distinguish
between finding no entry and finding an entry whose valueisnil.

19.2 Pattern-Matching Queries

Calling db-query is not a very flexible way of looking at the contents of the
database. Usually the user wants to ask questions which depend on more than
just the first element of afact. A query language is a language for expressing

19.2 PATTERN-MATCHING QUERIES 249

(query) : ((symbal) (argument)*)
. (not {query))
: (and (query)*)
: (or (query)*)
(argument) : 7(symbol)
: {(symbol)
: (number)

Figure 19.2: Syntax of queries.

more complicated questions. In atypical query language, the user can ask for all
the values which satisfy some combination of restrictions—for example, the last
names of all the paintersbornin 1697.

Our programwill provide a declarative query language. In adeclarative query
language, the user specifiesthe constraints which answers must satisfy, and leaves
it to the system to figure out how to generatethem. Thisway of expressing queries
is close to the form people use in everyday conversation. With our program, we
will be able to express the sample query by asking for al the x such that there
isafact of theform (painter X ...), and afact of theform (dates x 1697
...). Wewill beableto refer to al the painters born in 1697 by writing:

(and (painter 7x 7y 7z)
(dates ?7x 1697 7w))

Aswell asaccepting simple queries consisting of a predicate and some arguments,
our program will be able to answer arbitrarily complex queriesjoined together by
logical operatorslike and and or. The syntax of the query languageis shownin
Figure 19.2.

Since facts are indexed under their predicates, variables cannot appear in the
predicate position. If you were willing to give up the benefits of indexing, you
could get around this restriction by always using the same predicate, and making
thefirst argument the de facto predicate.

Like many such systems, this program has a skeptic’s notion of truth: some
facts are known, and everything else is false. The not operator succeeds if the
fact in question is not present in the database. To a degree, you could represent
explicit falsity by the Wayne's World method:

(edible motor-oil not)

However, thenot operator wouldn’t treat these facts differently from any others.

250 A QUERY COMPILER

In programming languages there is a fundamental distinction between inter-
preted and compiled programs. In this chapter we examine the same question
with respect to queries. A query interpreter accepts aquery and usesit to generate
answers from the database. A query compiler accepts a query and generates a
programwhich, when run, yieldsthe same result. Thefollowing sectionsdescribe
aquery interpreter and then a query compiler.

19.3 A Query Interpreter

To implement a declarative query language we will use the pattern-matching
utilities defined in Section 18.4. The functions shown in Figure 19.3 interpret
queries of the form shown in Figure 19.2. The central function in this code is
interpret-query, which recursively works through the structure of a complex
query, generating bindings in the process. The evaluation of complex queries
proceeds | eft-to-right, asin Common Lisp itself.

When the recursion gets down to patterns for facts, interpret-query cals
lookup. Thisiswhere the pattern-matching occurs. The function lookup takes
a pattern consisting of a predicate and a list of arguments, and returnsalist of all
the bindings which make the pattern match some fact in the database. It gets all
the database entriesfor the predicate, and callsmat ch (page 239) to compare each
of them against the pattern. Each successful match returnsalist of bindings, and
lookup inturnreturnsalist of al theselists.

> (lookup ’painter ’(7x 7y english))
(C(?Y . JOSHUA) (7X . REYNOLDS)))

These results are then filtered or combined depending on the surrounding
logical operators. The final result is returned as a list of sets of bindings. Given
the assertions shown in Figure 19.4, here is the example from earlier in this
chapter:

> (interpret-query ’(and (painter 7x 7y 7z)
(dates 7x 1697 7w)))
(((?w . 1768) (?Z . VENETIAN) (?Y . ANTONIO) (?X . CANALE))
((?w . 1772) (?Z . ENGLISH) (?Y . WILLIAM) (?X . HOGARTH)))

As a general rule, queries can be combined and nested without restriction. In a
few cases there are subtle restrictions on the syntax of queries, but these are best
dealt with after looking at some examples of how this codeis used.

The macrowith-answer providesaclean way of using the query interpreter
within Lisp programs. It takes as its first argument any legal query; the rest
of the arguments are treated as a body of code. A with-answer expands into

19.3 A QUERY INTERPRETER 251

(defmacro with-answer (query &body body)
(let ((binds (gensym)))
‘(dolist (,binds (interpret-query ’,query))
(let , (mapcar #’(lambda (v)
“(,v (binding ’,v ,binds)))
(vars-in query #’atom))
»@body))))

(defun interpret-query (expr &optional binds)
(case (car expr)
(and (interpret-and (reverse (cdr expr)) binds))
(or (interpret-or (cdr expr) binds))
(not (interpret-not (cadr expr) binds))
(t (lookup (car expr) (cdr expr) binds))))

(defun interpret-and (clauses binds)
(if (null clauses)
(1ist binds)
(mapcan #’(lambda (b)
(interpret-query (car clauses) b))
(interpret-and (cdr clauses) binds))))

(defun interpret-or (clauses binds)
(mapcan #’(lambda (c)
(interpret-query c binds))
clauses))

(defun interpret-not (clause binds)
(if (interpret-query clause binds)
nil
(1ist binds)))

(defun lookup (pred args &optional binds)
(mapcan #’(lambda (x)
(aif2 (match x args binds) (1list it)))
(db-query pred)))

Figure 19.3: Query interpreter.

252 A QUERY COMPILER

(clear-db)

(fact painter hogarth william english)
(fact painter canale antonio venetian)
(fact painter reynolds joshua english)
(fact dates hogarth 1697 1772)

(fact dates canale 1697 1768)

(fact dates reynolds 1723 1792)

Figure 19.4: Assertion of sample facts.

code which collects al the sets of bindings generated by the query, then iterates
through the body with the variablesin the query bound as specified by each set of
bindings. Variables which appear in the query of a with-answer can (usually)
be used within its body. When the query is successful but contains no variables,
with-answer evaluatesthe body of codejust once.

With the database as defined in Figure 19.4, Figure 19.5 shows some sample
queries, accompanied by English translations. Because pattern-matching is done
withmatch, it is possible to use the underscore as awild-card in patterns.

To keep these examples short, the code within the bodies of the queries does
nothing more than print some result. In general, the body of awith-answer can
consist of any Lisp expressions.

19.4 Restrictionson Binding

There are some restrictions on which variables will be bound by a query. For
example, why should the query

(not (painter 7x 7y 7z))

assign any bindingsto 7x and 7y at al? There are an infinite number of combi-
nations of 7x and 7y which are not the name of some painter. Thus we add the
following restriction: thenot operator will filter out bindings which are already
generated, asin

(and (painter 7x 7y 7z) (not (dates 7x 1772 7d)))

but you cannot expect it to generate bindings all by itself. We have to generate
sets of bindings by looking for painters before we can screen out the ones not born
in 1772. If we had put the clauses in the reverse order:

(and (not (dates 7x 1772 7d)) (painter 7x 7y ?7z)) ; wrong

19.4 RESTRICTIONS ON BINDING 253

The first name and nationality of every painter called Hogarth.

> (with-answer (painter hogarth 7x 7y)
(princ (list ?x ?7y)))

(WILLIAM ENGLISH)

NIL

Thelast name of every painter bornin 1697. (Our original example.)

> (with-answer (and (painter ?x _ _)
(dates 7x 1697 _))
(princ (list ?x)))
(CANALE) (HOGARTH)
NIL

Thelast name and year of birth of everyone who died in 1772 or 1792.

> (with-answer (or (dates 7x ?y 1772)
(dates ?x 7y 1792))
(princ (list ?x ?7y)))
(HOGARTH 1697) (REYNOLDS 1723)
NIL

The last name of every English painter not born the same year as a Venetian
one.

> (with-answer (and (painter 7x _ english)
(dates ?x ?b _)
(not (and (painter ?7x2 _ venetian)
(dates ?x2 ?b _))))
(princ 7x))
REYNOLDS
NIL

Figure 19.5: The query interpreter in use.

thenwewould get nil astheresult if there were any paintersbornin 1772. Even
in the first example, we shouldn’t expect to be able to use the value of 7d within
the body of awith-answer expression.

Also, expressionsof theform (or q;... q,) areonly guaranteed to generate
real bindings for variables which appear in al of the g;. If a with-answer
contained the query

(or (painter 7x 7y 7z) (dates 7x 7b 7d))

254 A QUERY COMPILER

you could expect to use the binding of ?x, because no matter which of the
subqueries succeeds, it will generate a binding for 7x. But neither 7y nor 7b is
guaranteed to get a binding from the query, though one or the other will. Pattern
variables not bound by the query will benil for that iteration.

19.5 A Query Compiler

The code in Figure 19.3 does what we want, but inefficiently. It analyzes the
structure of the query at runtime, though it is known at compile-time. And it
conses up lists to hold variable bindings, when we could use the variables to hold
their own values. Both of these problems can be solved by definingwith-answer
in adifferent way.

Figure 19.6 defines a new version of with-answer. The new version con-
tinues a trend which began with avg (page 182), and continued with if-match
(page 242): it does at compile-time much of the work that the old version did
at runtime. The code in Figure 19.6 bears a superficial resemblance to that in
Figure 19.3, but none of these functions are called at runtime. Instead of gen-
erating bindings, they generate code, which becomes part of the expansion of
with-answer. At runtime this code will generate all the bindings which satisfy
the query according to the current state of the database.

In effect, this program is one big macro. Figure 19.7 shows the macroexpan-
sion of awith-answer. Most of the work is done by pat-match (page 242),
which is itself a macro. Now the only new functions needed at runtime are the
basic database functions shown in Figure 19.1.

When with-answer is caled from the toplevel, query compilation has little
advantage. The code representing the query is generated, evaluated, then thrown
away. But when awith-answer expression appears within a Lisp program, the
code representing the query becomes part of its macroexpansion. So when the
containing program is compiled, the code for all the queries will be compiled
inlinein the process.

Although the primary advantage of the new approach is speed, it also makes
with-answer expressions better integrated with the code in which they appear.
This shows in two specific improvements. First, the arguments within the query
now get evaluated, so we can say:

> (setq my-favorite-year 1723)
1723
> (with-answer (dates 7x my-favorite-year 7d)
(format t "“A was born in my favorite year. %" ?x))
REYNOLDS was born in my favorite year.
NIL

195 A QUERY COMPILER 255

(defmacro with-answer (query &body body)
‘(with-gensyms , (vars-in query #’simple?)
, (compile-query query ‘(progn ,@body))))

(defun compile-query (q body)
(case (car q)
(and (compile-and (cdr q) body))
(or (compile-or (cdr q) body))
(not (compile-not (cadr q) body))
(1isp ‘(if ,(cadr q) ,body))
(t (compile-simple q body))))

(defun compile-simple (q body)
(let ((fact (gensym)))
‘(dolist (,fact (db-query ’,(car q)))
(pat-match ,(cdr q) ,fact ,body nil))))

(defun compile-and (clauses body)
(if (null clauses)
body
(compile-query (car clauses)
(compile-and (cdr clauses) body))))

(defun compile-or (clauses body)
(if (null clauses)

nil

(let ((gbod (gensym))
(vars (vars-in body #’simple?)))

‘(labels ((,gbod ,vars ,body))
,@(mapcar #’(lambda (cl)
(compile-query cl ‘(,gbod ,@vars)))
clauses)))))

(defun compile-not (q body)
(let ((tag (gensym)))
“(if (block ,tag
, (compile-query q ‘(return-from ,tag nil))
t)
,body)))

Figure 19.6: Query compiler.

256 A QUERY COMPILER

(with-answer (painter ?x 7y 7z)
(format t ""A “A is a painter.”)" 7y 7x))

is expanded by the query interpreter into:

(dolist (#:g1 (interpret-query ’(painter ?x 7y 7z)))
(let ((?x (binding ’7x #:g1))
(7y (binding ’7y #:g1))
(7z (binding ’7z #:g1)))
(format t ""A “A is a painter.”%" 7y 7x)))

and by the query compiler into:

(with-gensyms (7x 7y 7z)
(dolist (#:g1 (db-query ’painter))
(pat-match (?x 7y ?7z) #:gl
(progn
(format t ""A “A is a painter.”)" 7y 7x))
nil)))

Figure 19.7: Two expansions of the same query.

This could have been done in the query interpreter, but only at the cost of calling
eval explicitly. And even then, it wouldn’t have been possible to refer to lexical
variablesin the query arguments.

Since arguments within queries are now evaluated, any literal argument (e.g.
english) that doesn’t evaluate to itself should now be quoted. (See Figure 19.8.)

The second advantage of the new approach is that it is now much easier to
include normal Lisp expressionswithin queries. The query compiler addsalisp
operator, which may be followed by any Lisp expression. Like thenot operator,
it cannot generate bindings by itself, but it will screen out bindings for which
the expression returns nil. The lisp operator is useful for getting at built-in
predicates like >:

> (with-answer (and (dates 7x 7b ?7d)
(lisp (> (- 7d 7b) 70)))
(format t ""A lived over 70 years. %" 7x))
CANALE lived over 70 years.
HOGARTH lived over 70 years.
NIL

A well-implemented embedded language can have a seamless interface with the

195 A QUERY COMPILER 257

The first name and nationality of every painter called Hogarth.

> (with-answer (painter ’hogarth 7x 7y)
(princ (list ?x ?7y)))

(WILLIAM ENGLISH)

NIL

Thelast name of every English painter not born in the same year asa Venetian
painter.

> (with-answer (and (painter ?x _ ’english)
(dates 7x ?b _)
(not (and (painter 7x2 _ ’venetian)
(dates 7x2 7b _))))
(princ 7x))
REYNOLDS
NIL

The last name and year of death of every painter who died between 1770 and
1800 exclusive.

> (with-answer (and (painter ?x _ _)
(dates 7x _ 7d)
(lisp (< 1770 ?7d 1800)))
(princ (list ?7x ?7d)))
(REYNOLDS 1792) (HOGARTH 1772)
NIL

Figure 19.8: The query compiler in use.

base language on both sides.

Aside from these two additions—the evaluation of arguments and the new
1isp operator—the query language supported by the query compiler is identical
to that supported by the interpreter. Figure 19.8 shows examples of the results
generated by the query compiler with the database as defined in Figure 19.4.

Section 17.2 gave two reasons why it is better to compile an expression
than feed it, as aligt, to eval. The former is faster, and allows the expression
to be evaluated in the surrounding lexical context. The advantages of query
compilation are exactly analogous. Work that used to be done at runtime is now
done at compile-time. And because the queries are compiled as a piece with the
surrounding Lisp code, they can take advantage of the lexical context.

20

Continuations

A continuationisaprogramfrozenin action: asinglefunctional object containing
the state of a computation. When the object is evaluated, the stored computation
is restarted where it left off. In solving certain types of problems it can be
a great help to be able to save the state of a program and restart it later. In
multiprocessing, for example, a continuation conveniently represents a suspended
process. In nondeterministic search programs, acontinuation can represent anode
in the search tree.

Continuations can be difficult to understand. This chapter approaches the
topicintwo steps. Thefirst part of the chapter looks at the use of continuationsin
Scheme, which has built-in support for them. Once the behavior of continuations
has been explained, the second part showshow to use macrosto build continuations
in Common Lisp programs. Chapters 21-24 will all make use of the macros
defined here.

20.1 Scheme Continuations

One of the principal waysin which Scheme differs from Common Lisp isits
explicit support for continuations. This section shows how continuationswork in
Scheme. (Figure 20.1 lists some other differences between Scheme and Common
Lisp.)

A continuation is a function representing the future of a computation. When-
ever an expression is evaluated, something is waiting for the value it will return.
For example, in

258

20.1 SCHEME CONTINUATIONS 259

1. Scheme makes no distinction between what Common Lisp calls the
symbol-value and symbol-function oOf a symbol. In Scheme, a vari-
able has a single value, which can be either a function or some other sort of
object. Thus there is no need for sharp-quote or funcall in Scheme. The
Common Lisp:

(let ((f #’(lambda (x) (1+ x))))
(funcall f 2))

would be in Scheme:

(let ((f (Qlambda (x) (1+ x))))
(f 2))

2. Since Scheme has only one name-space, it doesn’t need separate operators
(e.g. defun and setq) for assignmentsin each. Instead it has define, which
is roughly equivalent to defvar, and set!, which takes the place of setq.
Global variables must be created with define before they can be set with
set!.

3. In Scheme, named functions are usually defined with def ine, which takes
the place of defun aswell asdefvar. The Common Lisp:

(defun foo (x) (1+ x))
has two possible Scheme translations:

(define foo (lambda (x) (1+ x)))
(define (foo x) (1+ x))

4. In Common Lisp, the argumentsto afunction are evaluated | eft-to-right. In
Scheme, the order of evaluationisdeliberately unspecified. (Andimplementors
delight in surprising those who forget this.)

5. Instead of t andnil, Scheme has #t and #£. Theempty list, O, istruein
some implementations and false in others.

6. The default clause in cond and case expressions has the key else in
Scheme, instead of t asin Common Lisp.

7. Several built-in operators have different names: consp iSpair?, null is
null?, mapcar is(amost) map, and so on. Ordinarily these should be obvious
from the context.

Figure 20.1: Some differences between Scheme and Common Lisp.

260 CONTINUATIONS

/ (-x1) 2

when (- x 1) isevaluated, the outer / expression is waiting for the value, and
something else is waiting for its value, and so on and so on, all the way back to
the toplevel—where print iswaiting.

We can think of the continuation at any given time as a function of one
argument. If the previous expression were typed into the toplevel, then when the
subexpression (- x 1) was evaluated, the continuation would be;

(lambda (val) (/ val 2))

That is, the remainder of the computation could be duplicated by calling this
function on the return value. If instead the expression occurred in the following
context

(define (f1 w)
(let ((y (£2 w)))
(if (integer? y) (list ’a y) ’b)))

(define (f2 x)
(/ (-x1)2)

and £1 were caled from the toplevel, then when (- x 1) was evaluated, the
continuation would be equivalent to

(lambda (val)
(let ((y (/ val 2)))
(if (integer? y) (list ’a y) ’b)))

In Scheme, continuations are first-class objects, just like functions. You can
ask Scheme for the current continuation, and it will make you a function of one
argument representing the future of the computation. You can save this object for
aslong as you like, and when you call it, it will restart the computation that was
taking place when it was created.

Continuations can be understood as a generalization of closures. A closureis
afunction plus pointers to the lexical variables visible at the time it was created.
A continuation is a function plus a pointer to the whole stack pending at the time
it was created. When a continuation is evaluated, it returns a value using its own
copy of the stack, ignoring the current one. If a continuationis created at T, and
evaluated at Ty, it will be evaluated with the stack that was pending at T;.

Scheme programs have access to the current continuation via the built-in
operator call-with-current-continuation (call/cc for short). When a
program calls call/cc on afunction of one argument:

20.1 SCHEME CONTINUATIONS 261

(call-with-current-continuation
(lambda (cc)
D))

thefunction will be passed another function representing the current continuation.
By storing the value of cc somewhere, we save the state of the computation at the
point of the call/cc.

In this example, we append together a list whose last element is the value
returned by acall/cc expression:

> (define frozen)
FROZEN
> (append ’(the call/cc returned)
(1ist (call-with-current-continuation
(lambda (cc)
(set! frozen cc)

’a))))
(THE CALL/CC RETURNED A)

The call/cc returns a, but first saves the continuation in the globa variable
frozen.

Calling frozen will restart the old computation at the point of the call/cc.
Whatever value we passto frozen will be returned as the value of the call/cc:

> (frozen ’again)
(THE CALL/CC RETURNED AGAIN)

Continuations aren’t used up by being evaluated. They can be called repeatedly,
just like any other functional object:

> (frozen ’thrice)
(THE CALL/CC RETURNED THRICE)

When we call a continuation within some other computation, we see more
clearly what it means to return back up the old stack:

> (+ 1 (frozen ’safely))
(THE CALL/CC RETURNED SAFELY)

Here, the pending + is ignored when frozen is caled. The latter returns up
the stack that was pending at the time it was first created: through 1list, then
append, to the toplevel. If frozen returned a value like a normal function call,
the expression above would have yielded an error when + tried to add 1 to alist.

Continuations do not get unique copies of the stack. They may share variables
with other continuations, or with the computation currently in progress. In this
exampl e, two continuations share the same stack:

262 CONTINUATIONS

> (define frozl)
FROZ1
> (define froz2)
FROZ2
> (let ((x 0))
(call-with-current-continuation
(lambda (cc)
(set! frozl cc)
(set! froz2 cc)))
(set! x (1+ x))
x)
1

so callsto either will return successive integers:

(froz2)

>
2
> (frozl ()
3

Since the value of the call/cc expression will be discarded, it doesn’t matter
what argument we giveto froz1 and froz2.

Now that we can store the state of a computation, what do we do with it?
Chapters 21-24 are devoted to applications which use continuations. Here we
will consider a simple example which conveys well the flavor of programming
with saved states: we have a set of trees, and we want to generate lists containing
oneelement from each tree, until we get acombination satisfying some condition.

Trees can be represented as nested lists. Page 70 described away to represent
onekind of treeasalist. Here we use another, which alowsinterior nodesto have
(atomic) values, and any number of children. In this representation, an interior
node becomes a list; its car contains the value stored at the node, and its cdr
contains the representations of the node's children. For example, the two trees
shown in Figure 20.2 can be represented:

(define t1 ’(a (b (d h)) (c e (£ i) g)))
(define t2 (1 (2 (3 6 7) 4 5)))

Figure 20.3 containsfunctionswhich do depth-first traversalson such trees. In
areal program we would want to do something with the nodes as we encountered
them. Here we just print them. The function dft, given for comparison, does an
ordinary depth-first traversal:

> (dft t1)
ABDHCEFIG()

20.1 SCHEME CONTINUATIONS 263

Figure 20.2: Two Trees.

The function dft-node follows the same path through the tree, but deals out
nodes one at atime. When dft-node reaches a node, it follows the car of the
node, and pushes onto *saved* a continuation to explore the cdr.

> (dft-node t1)
A

Calling restart continues the traversal, by popping the most recently saved
continuation and calling it.

> (restart)
B

Eventually there will be no saved states left, a fact which restart signals by
returning done:

> (restart)
G

> (restart)
DONE

Finally, the function dft2 neatly packages up what we just did by hand:

> (dft2 t1)
ABDHCEFIG()

264 CONTINUATIONS

(define (dft tree)
(cond ((null? tree) ())
((not (pair? tree)) (write tree))
(else (dft (car tree))
(dft (cdr tree)))))

(define *savedx ())

(define (dft-node tree)
(cond ((null? tree) (restart))
((not (pair? tree)) tree)
(else (call-with-current-continuation
(lambda (cc)
(set! *savedx*
(cons (lambda ()
(cc (dft-node (cdr tree))))
*savedx))
(dft-node (car tree)))))))

(define (restart)
(if (null? *saved*)
’done
(let ((cont (car *savedx)))
(set! *saved* (cdr *savedx))

(cont))))

(define (dft2 tree)
(set! *saved* ())
(let ((node (dft-node tree)))
(cond ((eq? node ’done) ())
(else (write node)
(restart)))))

Figure 20.3; Treetraversal using continuations.

Noticethat thereisno explicit recursion or iteration in the definition of dft2: suc-
cessive nodes are printed because the continuations invoked by restart aways
return back through the same cond clausein dft-node.

This kind of program works like a mine. It digs the initial shaft by calling
dft-node. Solong asthe valuereturned is not done, the code following the call

20.2 SCHEME CONTINUATIONS 265

to dft-node will call restart, which sends control back down the stack again.
Thisprocesscontinuesuntil thereturnvaluesignalsthat themineisempty. Instead
of printing this value, dft2 returns #£. Search with continuations represents a
novel way of thinking about programs: put the right code in the stack, and get the
result by repeatedly returning up through it.

If we only want to traverse one tree at a time, as in dft2, then there is no
reason to bother using this technique. The advantage of dft-node is that we can
have several instances of it going at once. Suppose we have two trees, and we
want to generate, in depth-first order, the cross-product of their elements.

> (set! *saved* ())
O
> (let ((nodel (dft-node t1)))
(if (eq? nodel ’done)

’done

(list nodel (dft-node t2))))
(A1)
> (restart)
(A 2)

> (restart)
(B 1)

Using normal techniques, we would have had to take explicit steps to save our
place in the two trees. With continuations, the state of the two ongoing traversals
is maintained automatically. In a simple case like this one, saving our place in
the tree would not be so difficult. The trees are permanent data structures, so at
least we have some way of getting hold of “our place” inthetree. The great thing
about continuationsis that they can just as easily save our place in the middle of
any computation, even if there are no permanent data structures associated with
it. The computation need not even have a finite number of states, so long as we
only want to restart a finite number of them.

As Chapter 24 will show, both of these considerationsturn out to beimportant
in the implementation of Prolog. In Prolog programs, the “search trees’ are not
real datastructures, but areimplicit in the way the program generatesresults. And
the trees are often infinite, in which case we cannot hope to search the whole of
one before searching the next; we have no choice but to save our place, one way
or another.

266 CONTINUATIONS

20.2 Continuation-Passing M acros

Common Lisp doesn't provide call/cc, but with alittle extra effort we can do
the same things as we can in Scheme. This section shows how to use macros to
build continuations in Common Lisp programs. Scheme continuations gave us
two things:

1. Thebindingsof all variables at the time the continuation was made.
2. The state of the computation—what was going to happen from then on.

Inalexically scoped Lisp, closuresgive usthefirst of these. It turnsout that we can
also use closures to maintain the second, by storing the state of the computation
in variable bindings as well.

The macros shown in Figure 20.4 make it possible to do function calls while
preserving continuations. These macros replace the built-in Common Lisp forms
for defining functions, calling them, and returning val ues.

Functionswhich want to use continuations (or call functionswhich do) should
be defined with =defun instead of defun. The syntax of =defun is the same as
that of defun, but its effect is subtly different. Instead of defining just afunction,
=defun definesafunction and amacro which expandsinto acall toit. (Themacro
must be defined first, in case the function calls itself.) The function will have the
body that was passed to =defun, but will have an additional parameter, *contx,
consed onto its parameter list. In the expansion of the macro, this function will
receive *cont* along with its other arguments. So

(=defun addl (x) (=values (1+ x)))

macroexpandsinto

(progn (defmacro addl (x)
‘(=addl *cont* ,x))
(defun =addl (*cont* x)
(=values (1+ x))))

When we call add1, we are actualy calling not a function but a macro. The
macro expands into a function call, but with one extra parameter: *cont*. S0
the current value of xcontx* is always passed implicitly in a call to an operator
defined with =defun.

What is *cont* for? It will be bound to the current continuation. The
definition of =values shows how this continuation will be used. Any function
defined using =defun must return with =values, or call some other function

1Functions created by =defun are deliberately given interned names, to make it possible to trace
them. If tracing were never necessary, it would be safer to gensym the names.

20.2 CONTINUATION-PASSING MACROS 267

(setq *cont* #’identity)

(defmacro =lambda (parms &body body)
‘#’(lambda (*cont* ,@parms) ,@body))

(defmacro =defun (name parms &body body)
(let ((f (intern (concatenate ’string
"=" (symbol-name name)))))
¢ (progn
(defmacro ,name ,parms
‘(,?,f *cont* ,,@parms))
(defun ,f (xcont* ,@parms) ,@body))))

(defmacro =bind (parms expr &body body)
“(let ((*cont* #’(lambda ,parms ,@body))) ,expr))

(defmacro =values (&rest retvals)
¢ (funcall *cont* ,@retvals))

(defmacro =funcall (fn &rest args)
‘(funcall ,fn *cont* ,Qargs))

(defmacro =apply (fn &rest args)
‘(apply ,fn *cont* ,Qargs))

Figure 20.4: Continuation-passing macros.

which does so. The syntax of =values isthe same as that of the Common Lisp
form values. It can return multiple values if there is an =bind with the same
number of arguments waiting for them, but can't return multiple values to the
toplevel.

The parameter *cont* tells a function defined with =defun what to do with
its return value. When =values is macroexpanded it will capture *cont*, and
use it to simulate returning from the function. The expression

> (=values (1+ n))

expandsinto

(funcall *cont* (1+ n))

268 CONTINUATIONS

At thetoplevel, the value of *cont* isidentity, which just returns whatever is
passed to it. When we call (add1 2) from the toplevel, the call gets macroex-
panded into the equivalent of

(funcall #’ (lambda (*cont* n) (=values (1+ n))) *cont* 2)

The reference to *cont* will in this case get the global binding. The =values
expression will thus macroexpand into the equivalent of :

(funcall #’identity (1+ n))

which just adds 1 to n and returns the result.
In functions like add1, we go through all this trouble just to simulate what
Lisp function call and return do anyway:

> (=defun bar (x)
(=values (list ’a (addl x))))
BAR
> (bar 5)
(A 6)

The point is, we have now brought function call and return under our own control,
and can do other things if we wish.

It is by manipulating *cont* that we will get the effect of continuations.
Although *cont * hasaglobal value, thiswill rarely bethe oneused: *cont* will
nearly always be a parameter, captured by =values and the macros defined by
=defun. Withinthebody of add1, for example, *cont* isaparameter and not the
global variable. Thisdistinctionisimportant because these macroswouldn’t work
if *cont* were not alocal variable. That’swhy *cont* is givenitsinitial value
inasetq instead of adefvar: thelatter would aso proclaimit to be special.

Thethird macroin Figure 20.4, =bind, isintended to be used in the same way
asmultiple-value-bind. It takes alist of parameters, an expression, and a
body of code: the parameters are bound to the values returned by the expression,
and the code body is evaluated with those bindings. This macro should be used
whenever additional expressions have to be evaluated after calling a function
defined with =defun.

> (=defun message ()
(=values ’hello ’there))
MESSAGE

20.2 CONTINUATION-PASSING MACROS 269

> (=defun baz (O
(=bind (m n) (message)
(=values (list m n))))
BAZ
> (baz)
(HELLO THERE)

Notice that the expansion of an =bind createsanew variable called *cont*. The
body of baz macroexpandsinto:

(let ((xcont* #’(lambda (m n)
(=values (list m n)))))
(message))

which in turn becomes:

(let ((*cont* #’(lambda (m n)
(funcall *cont* (list m n)))))
(=message *contx*))

The new value of *xcont* isthe body of the=bind expression, so whenmessage
“returns’ by funcalling *cont*, the result will be to evaluate the body of code.
However (and thisis the key point), within the body of the =bind:

#’ (lambda (m n)
(funcall *cont* (list m n)))

the *cont* that was passed as an argument to =baz is still visible, so when the
body of codein turn evaluates an =values, it will be ableto returnto the original
calling function. The closures are knitted together: each binding of *xcont* isa
closure containing the previous binding of *cont*, forming a chain which leads
all the way back up to the global value.

We can see the same phenomenon on asmaller scale here:

> (let ((f #’identity))
(let ((g #’ (lambda (x) (funcall f (list ’a x)))))
#’ (lambda (x) (funcall g (list ’b x)))))
#<Interpreted-Function BF6326>
> (funcall * 2)
(A (B 2))

This example creates a function which is a closure containing a reference to g,
which is itself a closure containing a reference to £. Similar chains of closures
were built by the network compiler on page 80.

270 CONTINUATIONS

1. The parameter list of a function defined with =defun must consist solely
of parameter names.

2. Functions which make use of continuations, or call other functions which
do, must be defined with =1ambda or =defun.

3. Such functions must terminate either by returning valueswith =values, or
by calling another function which obeysthis restriction.

4. If an=bind, =values, =apply, Of =funcall expression occursin a seg-
ment of code, it must be atail call. Any code to be evaluated after an =bind
should be put in its body. So if we want to have several =binds one after
another, they must be nested:

(=defun foo (x)

(=bind (y) (bar x)
(format t "Ho ")
(=bind (z) (baz x)

(format t "Hum.")
(=values x y 2))))

Figure 20.5: Restrictions on continuation-passing macros.

The remaining macros, =apply and =funcall, are for use with functions
defined by =1lambda. Note that “functions’ defined with =defun, because they
are actually macros, cannot be given as arguments to apply or funcall. The
way around this problem is analogousto the trick mentioned on page 110. Itisto
package up the call inside another =1ambda:

> (=defun addl (x)
(=values (1+ x)))
ADD1
> (let ((fn (=lambda (n) (addl n))))
(=bind (y) (=funcall fn 9)
(format nil "9 + 1 = "A" y)))
"9 + 1 = 10"

Figure 20.5 summarizes all the restrictions imposed by the continuation-
passing macros. Functions which neither save continuations, nor call other func-
tions which do, need not use these special macros. Built-in functions like 1ist,
for example, are exempt.

Figure 20.6 contains the code from Figure 20.3, trand ated from Scheme into
Common Lisp, and using the continuation-passing macros instead of Scheme

20.2 CONTINUATION-PASSING MACROS 271

(defun dft (tree)
(cond ((null tree) nil)
((atom tree) (princ tree))
(t (dft (car tree))
(dft (cdr tree)))))

(setq *savedx* nil)

(=defun dft-node (tree)
(cond ((null tree) (restart))
((atom tree) (=values tree))
(t (push #’(lambda () (dft-node (cdr tree)))
saved)
(dft-node (car tree)))))

(=defun restart ()
(if *savedx*
(funcall (pop *savedx))
(=values ’done)))

(=defun dft2 (tree)
(setq *saved* nil)
(=bind (node) (dft-node tree)
(cond ((eq node ’done) (=values nil))
(t (princ node)
(restart)))))

Figure 20.6: Treetraversal using continuation-passing macros.

continuations. With the same example tree, dft2 works just as before:

> (setq t1 ’(a (b (d b)) (ce (f 1) g))
t2 (1 (2 (36 7) 45)))

(1 (2 36 7) 4 5))

> (dft2 t1)

ABDHCEFIG

NIL

Saving states of multiple traversals also works as in Scheme, though the example
becomes a bit longer:

272 CONTINUATIONS

> (=bind (nodel) (dft-node t1)
(if (eq nodel ’done)
’done
(=bind (node2) (dft-node t2)
(list nodel node2))))

(A1)
> (restart)
(A 2)

> (restart)
(B 1)

By knitting together a chain of lexical closures, Common Lisp programs can
build their own continuations. Fortunately, the closures are knitted together by
the macros in the sweatshop of Figure 20.4, and the user can have the finished
garment without giving athought to its origins.

Chapters 21-24 all rely on continuations in some way. These chapters will
show that continuations are an abstraction of unusual power. They may not be
overly fast, especially when implemented on top of the language as macros, but
the abstractions we can build upon them make certain programs much faster to
write, and thereis a place for that kind of speed too.

20.3 Code-Walkersand CPS Conversion

The macros described in the previous section represent acompromise. They give
us the power of continuations, but only if we write our programsin a certain way.
Rule 4 in Figure 20.5 means that we always have to write

(=bind (x) (fn y)
(list ’a x))

rather than

(list ’a ; wrong
(=bind (x) (fn y) %))

A true call/cc imposes no such restrictions on the programmer. A call/cc can
grab the continuation at any point in aprogram of any shape. We could implement
an operator with the full power of call/cc, butit would bealot morework. This
section outlines how it could be done.

20.3 CODE-WALKERS AND CPS CONVERSION 273

A Lisp program can be transformed into a form called “continuation-passing
style” Programs which have undergone complete cps conversion are impossible
to read, but one can grasp the spirit of this process by looking at code which has
been partially transformed. The following function to reverse lists:

(defun rev (x)
(if (null x)
nil
(append (rev (cdr x)) (1list (car x)))))

yields an equivalent continuati on-passing version:

(defun rev2 (x)
(reve x #’identity))

(defun revc (x k)
(if (null x)
(funcall k nil)
(revc (cdr x)
#’ (lambda (w)
(funcall k (append w (list (car x))))))))

Inthe continuation-passing style, functionsget an additional parameter (herek)
whose value will be the continuation. The continuation is a closure representing
what should be done with the current value of the function. On thefirst recursion,
the continuation is identity; what should be done is that the function should
just return its current value. On the second recursion, the continuation will be
equivalent to:

#’ (lambda (w)
(identity (append w (list (car x)))))

which says that what should be done is to append the car of thelist to the current
value, and return it.

Once you can do CPs conversion, it is easy to write call/cc. In aprogram
which has undergone cpPs conversion, the entire current continuation is aways
present, and call/cc can be implemented as a simple macro which calls some
function with it as an argument.

To do cps conversion we need a code-walker, a program that traverses the
trees representing the source code of a program. Writing a code-walker for
Common Lisp is a serious undertaking. To be useful, a code-walker has to do
more than simply traverse expressions. It also has to know a fair amount about
what the expressions mean. A code-walker can't just think in terms of symbols,

274 CONTINUATIONS

for example. A symbol could represent, among other things, itself, a function, a
variable, ablock name, or atag for go. The code-walker has to use the context to
distinguish one kind of symbol from another, and act accordingly.

Since writing a code-walker would be beyond the scope of this book, the
macros described in this chapter are the most practical aternative. The macros
in this chapter split the work of building continuations with the user. If the user
writes programs in something sufficiently close to cps, the macros can do the
rest. That's what rule 4 really amounts to: if everything following an =bind
expression is within its body, then between the value of *cont* and the code
in the body of the =bind, the program has enough information to construct the
current continuation.

The =bind macro is deliberately written to make this style of programming
feel natural. In practice the restrictions imposed by the continuation-passing
macros are bearable.

21

Multiple Processes

The previous chapter showed how continuations allow a running program to get
hold of its own state, and store it away to be restarted later. This chapter deals
with a model of computation in which a computer runs not one single program,
but a collection of independent processes. The concept of a process corresponds
closely with our concept of the state of a program. By writing an additional layer
of macros on top of those in the previous chapter, we can embed multiprocessing
in Common Lisp programs.

21.1 TheProcess Abstraction

Multiple processes are a convenient way of expressing programs which must do
several things at once. A traditional processor executes one instruction at atime.
To say that multiple processes do more than one thing at once is not to say that
they somehow overcomethishardwarelimitation: what it meansisthat they allow
usto think at anew level of abstraction, in which we don't have to specify exactly
what the computer is doing at any given time. Just as virtual memory alowsusto
act as though the computer had more memory than it actually does, the notion of
aprocess allows us to act as if the computer could run more than one program at
atime.

The study of processesistraditionally in the domain of operating systems. But
the usefulness of processes as an abstraction is not limited to operating systems.
They are equally useful in other real-time applications, and in simulations.

Much of the work done on multiple processes has been devoted to avoiding
certain types of problems. Deadlock is one classic problem with multiple pro-

275

276 MULTIPLE PROCESSES

cesses. two processes both stand waiting for the other to do something, like two
people who each refuse to cross a threshold before the other. Another problem is
the query which catchesthe systemin aninconsistent state—say, abalanceinquiry
which arrives while the system is transferring funds from one account to another.
This chapter deals only with the process abstraction itself; the code presented here
could be used to test algorithmsfor preventing deadlock or inconsistent states, but
it does not itself provide any protection against these problems.

The implementation in this chapter follows arule implicit in all the programs
in this book: disturb Lisp as little as possible. In spirit, a program ought to be
as much as possible like a modification of the language, rather than a separate
application written in it. Making programs harmonize with Lisp makes them
more robust, like a machine whose parts fit together well. 1t also saves effort;
sometimes you can make Lisp do a surprising amount of your work for you.

The aim of this chapter is to make a language which supports multiple pro-
cesses. Our strategy will be to turn Lisp into such alanguage, by adding a few
new operators. The basic elements of our language will be as follows:

Functions will be defined with the =defun or =1ambda macros from the
previous chapter.

Processes will be instantiated from function calls. Thereis no limit on the
number of active processes, or the number of processes instantiated from
any one function. Each process will have a priority, initially given as an
argument when it is created.

Wait expressions may occur within functions. A wait expression will take
avariable, atest expression, and a body of code. If a process encounters
await, the process will be suspended at that point until the test expression
returnstrue. Once the process restarts, the body of code will be evaluated,
with the variable bound to the val ue of the test expression. Test expressions
should not ordinarily have side-effects, because there are no guarantees
about when, or how often, they will be evaluated.

Scheduling will be done by priority. Of all the processes able to restart, the
system will run the one with the highest priority.

The default process will run if no other process can. It is aread-eval-print
loop.

Creation and deletion of most objectswill be possible on thefly. From run-
ning processesit will be possible to define new functions, and to instantiate
and kill processes.

21.2 IMPLEMENTATION

277

(defstruct proc pri state wait)
(proclaim ’(special *procs* *procx))
(defvar *halt* (gensym))

(defvar *default-proc*
(make-proc :state #’(lambda (x)
(format t "~Y>> ")
(princ (eval (read)))
(pick-process))))

(defmacro fork (expr pri)
‘(progl ’,expr
(push (make-proc
:state #’(lambda (, (gensym))
, eXpr
(pick-process))
:pri ,pri)
xprocs)))

(defmacro program (name args &body body)
‘(=defun ,name ,args
(setq *procs* nil)
,@body
(catch *halt* (loop (pick-process)))))

Figure 21.1: Process structure and instantiation.

Continuations make it possible to store the state of a Lisp program. Being ableto
store several statesat onceis not very far from having multiple processes. Starting
with the macros defined in the previous chapter, we need less than 60 lines of code

to implement multiple processes.

21.2 Implementation

Figures21.1 and 21.2 contain all thecode needed to support multiple processes.
Figure 21.1 contains codefor the basic data structures, the default process, initial-
ization, and instantiation of processes. Processes, or procs, have the following

structure:

278 MULTIPLE PROCESSES

pri isthe priority of the process, which should be a positive number.

state isacontinuation representing the state of a suspended process. A process
isrestarted by funcallingits state.

wait isusually afunction which must return true in order for the process to be
restarted, butinitially thewait of anewly created processisnil. A process
with anull wait can always be restarted.

The program uses three global variables: *procsx*, the list of currently sus-
pended processes; *proc*, the process now running; and *default-procx, the
default process.

The default process runs only when no other process can. It simulates the
Lisp toplevel. Within thisloop, the user can halt the program, or type expressions
which enable suspended processes to restart. Notice that the default process calls
eval explicitly. Thisisoneof thefew situationsin which it islegitimate to do so.
Generaly it isnot agoodideato call eval at runtime, for two reasons:

1. It'sinefficient: eval ishanded araw list, and either hasto compileit on the
spot, or evaluate it in an interpreter. Either way is slower than compiling
the code beforehand, and just calling it.

2. It'sless powerful, because the expression is evaluated with no lexical con-
text. Among other things, this means that you can't refer to ordinary
variables visible outside the expression being evaluated.

Usually, calling eval explicitly is like buying something in an airport gift-shop.
Having waited till the last moment, you have to pay high prices for a limited
selection of second-rate goods.

Caseslikethisare rareinstanceswhen neither of the two preceding arguments
applies. We couldn’t possibly have compiled the expressions beforehand. We are
just now reading them; there is no beforehand. Likewise, the expression can’t
refer to surrounding lexical variables, because expressions typed at the toplevel
arein the null lexical environment. In fact, the definition of this function simply
reflects its English description: it reads and evaluates what the user types.

The macro fork instantiates a process from a function call. Functions are
defined as usual with =defun:

(=defun foo (%)
(format t "Foo was called with ~A.~%" x)
(=values (1+ x)))

Now when we call fork with afunction call and a priority number:

21.2 IMPLEMENTATION 279

(fork (foo 2) 25)

anew process is pushed onto *procs*. The new process has a priority of 25, a
proc-wait of nil, sinceit hasn’t been started yet, and aproc-state consisting
of acall to foo with the argument 2.

The macro program alows us to create a group of processes and run them
together. The definition:

(program two-foos (a b)
(fork (foo a) 99)
(fork (foo b) 99))

macroexpands into the two fork expressions, sandwiched between code which
clears out the suspended processes, and other code which repeatedly chooses a
processto run. Outside thisloop, the macro establishes atag to which control can
be thrown to end the program. As a gensym, this tag will not conflict with tags
established by user code. A group of processes defined as a program returns no
particular value, and is only meant to be called from the toplevel.

After the processes are instantiated, the process scheduling code takes over.
This codeis shown in Figure 21.2. The function pick-process selects and runs
the highest priority process which is able to restart. Selecting this processis the
job of most-urgent-process. A suspended processis dligible to run if it has
no wait function, or its wait function returns true. Among eligible processes,
the one with the highest priority is chosen. The winning process and the value
returned by its wait function (if there is one) are returned to pick-process.
There will always be some winning process, because the default process aways
wants to run.

The remainder of the code in Figure 21.2 defines the operators used to switch
control between processes. The standard wait expression iswait, as used in the
function pedestrian in Figure 21.3. In this example, the process waits until
thereis something in thelist xopen-doors*, then prints a message:

> (ped)

>> (push ’door2 *open-doors*)
Entering DOOR2

>> (halt)

NIL

A wait is similar in spirit to an =bind (page 267), and carries the same
restriction that it must be the last thing to be evaluated. Anything we want to
happen after thewait must be put initsbody. Thus, if we want to have a process
wait several times, the wait expressions must be nested. By asserting facts aimed
at one another, processes can cooperate in reaching some goal, asin Figure 21.4.

280 MULTIPLE PROCESSES

(defun pick-process ()
(multiple-value-bind (p val) (most-urgent-process)
(setq *proc*x p
procs (delete p *procsx*))
(funcall (proc-state p) val)))

(defun most-urgent-process ()
(let ((procl *default-proc*) (max -1) (vall t))
(dolist (p *procsx*)
(let ((pri (proc-pri p)))
(if (> pri max)
(let ((val (or (nmot (proc-wait p))
(funcall (proc-wait p)))))

(when val
(setq procl p
max pri

vall val))))))
(values procl valil)))

(defun arbitrator (test cont)
(setf (proc-state *procx) cont
(proc-wait *proc*) test)
(push *proc* *procs*)
(pick-process))

(defmacro wait (parm test &body body)
¢ (arbitrator #’(lambda () ,test)
#’ (lambda (,parm) ,@body)))

(defmacro yield (&body body)
‘(arbitrator nil #’(lambda (, (gensym)) ,@body)))

(defun setpri (n) (setf (proc-pri *proc*) n))
(defun halt (&optional val) (throw *halt* val))
(defun kill (&optional obj &rest args)
(if obj
(setq *procs* (apply #’delete obj *procs* args))

(pick-process)))

Figure 21.2: Process scheduling.

21.2 IMPLEMENTATION 281

(defvar *open-doors* nil)
(=defun pedestrian ()
(wait d (car *open-doors*)

(format t "Entering ~“A”Y%" d)))

(program ped ()
(fork (pedestrian) 1))

Figure 21.3: One process with one wait.

Processes instantiated from visitor and host, if given the same door, will
exchange control via messages on a blackboard:

> (ballet)
Approach DOOR2. Open DOOR2. Enter DOOR2. Close DOOR2.

Approach DOOR1. Open DOOR1. Enter DOOR1. Close DOOR1.
>>

Thereisanother, smpler type of wait expression: yield, whoseonly purpose
isto give other higher-priority processesachanceto run. A process might want to
yield after executing asetpri expression, which resets the priority of the current
process. As with await, any code to be executed after a yield must be put
within its body.

The program in Figure 21.5 illustrates how the two operators work together.
Initially, the barbarians havetwo aims: to capture Rome and to plunder it. Captur-
ing the city has (dightly) higher priority, and so will run first. However, after the
city has been reduced, the priority of the capture process decreasesto 1. Then
thereisavote, and plunder, as the highest-priority process, starts running.

> (barbarians)
Liberating ROME.
Nationalizing ROME.
Refinancing ROME.
Rebuilding ROME.

>>

Only after the barbarianshavelooted Rome' s pal aces and ransomed the patricians,
doesthe capture process resume, and the barbariansturn to fortifying their own
position.

Underlying wait expressions is the more general arbitrator. Thisfunction
stores the current process, and then calls pick-process to start some process

282 MULTIPLE PROCESSES

(defvar *bboard* nil)

(defun claim (&rest f) (push f *bboardx*))

(defun unclaim (&rest f) (pull f *bboard* :test #’equal))
(defun check (&rest f) (find f *bboard* :test #’equal))

(=defun visitor (door)

(format t "Approach “A. " door)

(claim ’knock door)

(wait d (check ’open door)
(format t "Enter “A. " door)
(unclaim ’knock door)

(claim ’inside door)))

(=defun host (door)

(wait k (check ’knock door)
(format t "Open “A. " door)
(claim ’open door)

(wait g (check ’inside door)
(format t "Close “A."%" door)
(unclaim ’open door))))

(program ballet ()
(fork (visitor ’doorl) 1)
(fork (host ’doori) 1)
(fork (visitor ’door2) 1)
(fork (host ’door2) 1))

Figure 21.4: Synchronization with a blackboard.

(perhaps the same one) running again. It will be given two arguments. a test
function and a continuation. The former will be stored as the proc-wait of
the process being suspended, and called later to determine if it can be restarted.
The latter will become the proc-state, and caling it will restart the suspended

process.

Themacroswait and yield build this continuation function simply by wrap-

ping their bodiesin lambda-expressions. For example,

(wait d (car *bboard*) (=values d))

21.2 IMPLEMENTATION 283

(=defun capture (city)
(take city)
(setpri 1)
(yield
(fortify city)))

(=defun plunder (city)
(loot city)
(ransom city))

(defun take (c) (format t "Liberating ~A."%" c))
(defun fortify (c) (format t "Rebuilding “A.~%" c))
(defun loot (c) (format t "Nationalizing "A."%" c))

(defun ransom (c) (format t "Refinancing “A.7%" c¢))
(program barbarians ()

(fork (capture ’rome) 100)

(fork (plunder ’rome) 98))

Figure 21.5: Effect of changing priorities.

expandsinto:

(arbitrator #’(lambda () (car *bboard*))
#’ (lambda (d) (=values d)))

If the code obeys the restrictions listed in Figure 20.5, making a closure of the
wait’s body will preserve the whole current continuation. With its =values
expanded the second argument becomes;

#’ (lambda (d) (funcall *cont* d))

Since the closure contains a reference to *cont*, the suspended process with
this wait function will have a handle on where it was headed at the time it was
suspended.

Thehalt operator stops the whole program, by throwing control back to the
tag established by the expansion of program. It takes an optiona argument,
which will be returned as the value of the program. Because the default processis
aways willing to run, the only way programsend is by explicit halts. It doesn’t
matter what code followsahalt, sinceit won't be evaluated.

Individual processes can be killed by calling ki11. If given no arguments,
this operator kills the current process. Inthiscase, kill islike await expression

284 MULTIPLE PROCESSES

which neglects to store the current process. If kill is given arguments, they
become the argumentsto adelete onthelist of processes. In the current code,
thereisnot much one cansay inakill expression, because processes do not have
many properties to refer to. However, a more elaborate system would associate
more information with processes—time stamps, owners, and so on. The default
process can't be killed, becauseit isn't kept in the list *procs*.

21.3 TheLessthan-Rapid Prototype

Processes simulated with continuations are not going to be nearly as efficient as
real operating system processes. What's the use, then, of programs like the one
in this chapter?

Such programs are useful in the same way that sketches are. In exploratory
programming or rapid prototyping, the program is not an end in itself so much
as avehicle for working out one'sideas. In many other fields, something which
serves this purposeis called a sketch. An architect could, in principle, design an
entire building in his head. However, most architects seem to think better with
pencilsin their hands: the design of a building is usually worked out in a series
of preparatory sketches.

Rapid prototyping is sketching software. Like an architect’s first sketches,
software prototypestend to be drawn with afew sweeping strokes. Considerations
of cost and efficiency areignored in an initial push to develop an ideato the full.
The result, at this stage, is likely to be an unbuildable building or a hopelessly
inefficient piece of software. But the sketches are valuable all the same, because

1. They convey information briefly.
2. They offer achance to experiment.

The program described in this chapter is, like those in succeeding chapters, a
sketch. It suggests the outlines of multiprocessing in a few, broad strokes. And
though it would not be efficient enough for use in production software, it could
be quite useful for experimenting with other aspects of multiple processes, like
scheduling algorithms.

Chapters 2224 present other applications of continuations. None of themis
efficient enough for use in production software. Because Lisp and rapid proto-
typing evolved together, Lisp includes alot of features specifically intended for
prototypes:. inefficient but convenient featureslike property lists, keyword param-
eters, and, for that matter, lists. Continuations probably belong in this category.
They save more state than aprogram is likely to need. So our continuati on-based
implementation of Prolog, for example, isagood way to understand the language,
but an inefficient way to implement it.

21.3 THE LESS-THAN-RAPID PROTOTY PE 285

This book is concerned more with the kinds of abstractions one can build
in Lisp than with efficiency issues. It's important to realize, though, that Lisp
is a language for writing production software as well as a language for writing
prototypes. If Lisp has a reputation for slowness, it is largely because so many
programmers stop with the prototype. It is easy to write fast programsin Lisp.
Unfortunately, it is very easy to write slow ones. The initial version of a Lisp
program can be like a diamond: small, clear, and very expensive. There may be
agreat temptation to leave it that way.

In other languages, once you succeed in the arduous task of getting your
program to work, it may aready be acceptably efficient. If you tile a floor
with tiles the size of your thumbnail, you don’'t waste many. Someone used to
developing software on this principle may find it difficult to overcome the idea
that when a program works, it's finished. “In Lisp you can write programsin no
time at al,” he may think, “but boy, are they slow.” In fact, neither is the case.
You can get fast programs, but you have to work for them. In this respect, using
Lispislikelivingin arich country instead of apoor one: it may seem unfortunate
that one has to work to stay thin, but surely this is better than working to stay
alive, and being thin as a matter of course.

In less abstract languages, you work for functionality. In Lisp you work for
speed. Fortunately, working for speed is easier: most programs only have a few
critical sections in which speed matters.

22

Nondeter minism

Programming languages save us from being swamped by amass of detail. Lispis
agood language because it handles so many details itself, enabling programmers
to make the most of their limited tolerance for complexity. This chapter describes
how macros can make Lisp handle another important class of details: the details
of transforming a nondeterministic algorithm into a deterministic one.

Thischapter isdivided into five parts. Thefirst explainswhat nondeterminism
is. The second describesaSchemeimplementation of nondeterministic chooseand
fail which uses continuations. The third part presents Common Lisp versions of
choose and fail which build upon the continuation-passing macros of Chapter 20.
The fourth part shows how the cut operator can be understood independently
of Prolog. The final part suggests refinements of the original nondeterministic
operators.

The nondeterministic choice operators defined in this chapter will be used to
write an ATN compiler in Chapter 23 and an embedded Prolog in Chapter 24.

22.1 The Concept

A nondeterministic algorithm is one which relies on a certain sort of supernatural
foresight. Why talk about such al gorithmswhen wedon’t have accessto computers
with supernatural powers? Because anondeterministical gorithm can be simulated
by a deterministic one. For purely functiona programs—that is, those with
no side-effects—simulating nondeterminism is particularly straightforward. In
purely functional programs, nondeterminism can be implemented by search with
backtracking.

286

22.1 THE CONCEPT 287

This chapter shows how to simulate nondeterminism in functional programs.
If we have a smulator for nondeterminism, we can expect it to produce results
whenever a truly nondeterministic machine would. In many cases, writing a
program which depends on supernatural insight to solve a problem is easier than
writing one which doesn’t, so such a simulator would be a good thing to have.

In this section we will define the class of powers that nondeterminism allows
us; the next section demonstrates their utility in some sample programs. The
examples in these first two sections are written in Scheme. (Some differences
between Scheme and Common Lisp are summarized on page 259.)

A nondeterministic algorithm differs from a deterministic one because it can
use the two special operators choose and fail. Choose is afunction which takesa
finite set and returns one element. To explain how choose chooses, we must first
introduce the concept of a computational future.

Here we will represent choose as a function choose which takes a list and
returns one element. For each element, there is a set of futures the computation
could have if that element were chosen. In the following expression

(let ((x (choose (1 2 3))))
(if (odd? x)
(+ x 1)
x))

there are three possible futures for the computation when it reaches the point of
the choose:

1. If choose returns 1, the computation will go through the then-clause of the
if, and will return 2.

2. If choose returns 2, the computation will go through the el se-clause of the
if, and will return 2.

3. If choose returns 3, the computation will go through the then-clause of the
if, and will return 4.

In this case, we know exactly what the future of the computation will be as soon
aswe seewhat choose returns. Inthe general case, each choiceisassociated with
a set of possible futures, because within some futures there could be additional
chooses. For example, with

(let ((x (choose ’(2 3))))
(if (odd? x)
(choose ’(a b))
x))

288 NONDETERMINISM

there are two sets of futures at the time of thefirst choose:

1. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

2. If choose returns 3, the computation will go through the then-clause of
the if. At this point, the path of the computation splits into two possible
futures, onein which a isreturned, and onein which b is.

The first set has one future and the second set has two, so the computation has
three possible futures.

The point to remember is, if choose is given a choice of several aternatives,
each oneis associated with a set of possible futures. Which choice will it return?
We can assume that choose works as follows:

1. It will only return achoice for which some future does not contain acall to
fail.

2. A choose over zero dternativesis equivalent to afail.
So, for example, in

(let ((x (choose ’(1 2))))
(if (odd? x)
(fail)
x))

each of the possible choices has exactly one future. Since the future for a choice
of 1 containsacall to fail, only 2 can be chosen. So the expression as awhole
is deterministic: it alwaysreturns 2.

However, the following expression is not deterministic:

(let ((x (choose ’(1 2))))
(if (odd? x)
(let ((y (choose ’(a b))))
(if (eq? y ’a)
(fail)
y))
x))

At thefirst choose, there are two possible futuresfor achoice of 1, and onefor a
choice of 2. Within the former, though, the futureis really deterministic, because
achoice of a would result in acall to fail. So the expression as a whole could
return either b or 2.

Finally, thereis only one possible value for the expression

22.2 THE CONCEPT 289

(let ((x (choose (1 2))))
(if (odd? x)
(choose ’())
x))

because if 1 is chosen, the future goes through a choose with no choices. This
exampleis thus equivalent to the last but one.

It may not be clear yet from the preceding examples, but we have just got
ourselves an abstraction of astounding power. In nondeterministic algorithmswe
are alowed to say “ choose an element such that nothing we do later will resultina
cal tofail.” For example, thisisa perfectly legitimate nondeterministic algorithm
for discovering whether you have a known ancestor called Igor:

Function Ig(n)
if name(n) = *Igor’
then returnn
eseif parents(n)
then return Ig(choose(parents(n)))
elsefail

The fail operator is used to influence the value returned by choose. If we
ever encounter afail, choose would have chosen incorrectly. By definition choose
guesses correctly. So if we want to guarantee that the computation will never
pursue a certain path, al we need do is put a fail somewherein it, and that path
will never be followed. Thus, as it works recursively through generations of
ancestors, the function Ig is able to choose at each step a path which leads to an
| gor—to guess whether to follow the mother’s or father’s line.

Itisasif aprogram can specify that choose pick some element from a set of
aternatives, use the value returned by choose for as long as it wants, and then
retroactively decide, by using fail as a veto, what it wants choose to have picked.
And, presto, it turns out that that’s just what choose did return. Hence the model
in which choose has foresight.

In reality choose cannot have supernatural powers. Any implementation of
choose must simul ate correct guessing by backtracking whenit discoversmistakes,
like arat finding its way through a maze. But all this backtracking can be done
beneath the surface. Once you have someform of choose and fail, you get to write
algorithms like the one above, as if it really were possible to guess what ancestor
to follow. By using choose it is possible to write an algorithm to search some
problem space just by writing an algorithm to traverseit.

290 NONDETERMINISM

(define (descent nl n2)
(if (eq? nl n2)
(list n2)
(let ((p (try-paths (kids nl1) n2)))
(if p (cons nl p) #£))))

(define (try-paths ns n2)
(if (null? ns)
#f
(or (descent (car ns) n2)
(try-paths (cdr ns) n2))))

Figure 22.1: Deterministic tree search.

(define (descent nl n2)
(cond ((eq? nl n2) (1list n2))
((null? (kids n1)) (fail))
(else (cons nl1 (descent (choose (kids nl1)) n2)))))

Figure 22.2; Nondeterministic tree search.

222 Search

Many classic problems can be formulated as search problems, and for such prob-
lems nondeterminism often turns out to be a useful abstraction. Suppose nodes
is bound to alist of nodes in atree, and (kids n) is a function which returns
the descendants of node n, or #£ if there are none. We want to write a function
(descent N ny) which returns alist of nodes on some path from n; to its de-
scendant ny, if there is one. Figure 22.1 shows a deterministic version of this
function.

Nondeterminism allowsthe programmer to ignorethe detail s of finding a path.
It's possible simply to tell choose to find a node n such that thereis a path from
n to our destination. Using nondeterminism we can write the ssimpler version of
descent shown in Figure 22.2.

The version shown in Figure 22.2 does not explicitly search for anode on the
right path. It is written on the assumption that choose has chosen an n with the
desired properties. If we are used to looking at deterministic programs, we may
not perceive that choose has to work as if it could guess what n would make it

22.2 SEARCH 291

(define (two-numbers)
(list (choose (0 1 2 3 4 5))
(choose (0 1 2 3 4 5))))

(define (parlor-trick sum)
(let ((nums (two-numbers)))
(if (= (apply + nums) sum)
‘(the sum of ,@nums)

(fail))))

Figure 22.3: Choicein asubroutine.

through the computation which follows without failing.

Perhaps a more convincing example of the power of choose is its ability to
guess what will happen even in calling functions. Figure 22.3 contains a pair
of functions to guess two numbers which sum to a number given by the caller.
Thefirst function, two-numbers, nondeterministically chooses two numbers and
returnsthemin alist. When we call parlor-trick, it calls two-numbers for a
list of two integers. Note that, in making its choice, two-numbers doesn’'t have
access to the number entered by the user.

If thetwo numbersguessed by choose don't sum to the number entered by the
user, the computationfails. We canrely on choose having avoided computational
paths which fail, if there are any which don't. Thus we can assume that if the
caller givesanumber in theright range, choose will have guessed right, asindeed
it does:!

> (parlor-trick 7)
(THE SUM OF 2 5)

In simple searches, the built-in Common Lisp function £ind-if would do
just as well. Where is the advantage of nondeterministic choice? Why not just
iterate through the list of alternatives in search of the element with the desired
properties? The crucial difference between choose and conventional iteration is
that its extent with respect to fails is unbounded. Nondeterministic choose can
see arbitrarily far into the future; if something is going to happen at any point in
the future which would have invalidated some guess choose might make, we can
assume that choose knows to avoid guessing it. Aswe saw in parlor-trick,

1Since the order of argument evaluation is unspecified in Scheme (as opposed to Common Lisp,
which specifies |eft-to-right), this call might also return (THE SUM OF 5 2).

292 NONDETERMINISM

the fail operator works even after we return from the function in which the choose
occurs.

This kind of failure happens in the search done by Prolog, for example.
Nondeterminism is useful in Prolog because one of the central features of this
language is its ability to return answers to a query one at atime. By following
this course instead of returning all the valid answers at once, Prolog can handle
recursive rules which would otherwise yield infinitely large sets of answers.

Theinitial reactionto descent may beliketheinitial reaction to amerge sort:
where does the work get done? Asin amerge sort, the work gets doneimplicitly,
but it does get done. Section 22.3 describes an implementation of choosein which
all the code examples presented so far are real running programs.

These examples show the value of nondeterminism as an abstraction. Thebest
programming language abstractions save not just typing, but thought. In automata
theory, some proofs are difficult even to conceive of without relying on nonde-
terminism. A language which allows nondeterminism may give programmers a
similar advantage.

22.3 Scheme Il mplementation

This section explains how to use continuationsto simulate nondeterminism. Fig-
ure 22.4 contains Schemeimplementationsof chooseandfail. Beneath thesurface,
choose and fail simulate nondeterminism by backtracking. A backtracking
search program must somehow store enough information to pursue other aterna-
tivesif the chosen onefails. Thisinformationisstoredintheform of continuations
on the global list *pathsx*.

Thefunction choose ispassed alist of alternativesinchoices. If choicesis
empty, then choose callsfail, which sendsthe computation back to the previous
choose. If choices is (first . rest), choose first pushes onto *paths* a
continuation in which choose is called on rest, then returnsfirst.

The function fail is simpler: it just pops a continuation off *paths* and
calsit. If there aren't any saved paths left, then fail returns the symbol e.
However, it won't do simply to return it as afunction ordinarily returnsvalues, or
it will be returned asthe value of the most recent choose. What we really want to
do isreturn @ right to the toplevel. We do this by binding cc to the continuation
where fail is defined, which presumably is the toplevel. By calling cc, fail
can return straight there.

The implementation in Figure 22.4 treats *paths* as a stack, aways fail-
ing back to the most recent choice point. This strategy, known as chronological
backtracking, results in depth-first search of the problem space. The word “non-
determinism” is often used as if it were synonymous with the depth-first imple-

22.4 SCHEME IMPLEMENTATION 293

(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)
(fail)
(call-with-current-continuation
(lambda (cc)
(set! *paths*
(cons (lambda ()
(cc (choose (cdr choices))))
xpaths*))
(car choices)))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail
(lambda ()
(if (null? *pathsx*)
(cc failsym)
(let ((pl (car *paths*)))
(set! xpaths* (cdr *pathsx))
(PN

Figure 22.4: Scheme implementation of choose and fail.

mentation. Floyd's classic paper on nondeterministic algorithmsusesthetermin o
this sense, and this is aso the kind of nondeterminism we find in nondetermin-
istic parsers and in Prolog. However, it should be noted that the implementation
given in Figure 22.4 is not the only possible implementation, nor even a correct
one. In principle, choose ought to be able to choose an object which meets any
computable specification. But a program which used these versions of choose
and fail to search agraph might not terminate, if the graph contained cycles.

In practice, nondeterminism usually means using adepth-firstimplementation
equivalent to the one in Figure 22.4, and leaving it to the user to avoid loopsin
the search space. However, for readers who are interested, the last section in this
chapter describes how to implement true choose and fail .

294 NONDETERMINISM

22.4 Common Lisp Implementation

This section describes how to write a form of choose and fail in Common Lisp.
Asthe previous section showed, call/cc makesit easy to simulate nondetermin-
ism in Scheme. Continuations provide the direct embodiment of our theoretical
concept of a computational future. In Common Lisp, we can use instead the
continuation-passing macros of Chapter 20. With these macros we will be ableto
provide aform of choose slightly uglier than the Scheme version presented in the
previous section, but equivalent in practice.

Figure 22.5 containsa Common Lisp implementation of fail, and two versions
of choose. The syntax of a Common Lisp choose is dightly different from the
Scheme version. The Scheme choose took one argument: alist of choices from
which to select a value. The Common Lisp version has the syntax of a progn.
It can be followed by any number of expressions, from which it chooses one to
evauate:

> (defun do2 (x)
(choose (+ x 2) (x x 2) (expt x 2)))
D02
> (do2 3)
5
> (fail)
6

At the toplevel, we see more clearly the backtracking which underlies nondeter-
ministic search. The variable *pathsx* is used to store paths which have not yet
been followed. When the computation reaches a choose expression with several
aternatives, thefirst aternativeis evaluated, and the remaining choices are stored
on *paths*. If the program later on encounters a fail, the last stored choice
will be popped off *paths* and restarted. When there are no more paths left to
restart, fail returnsaspecia value:

> (fail)
9
> (fail)
Q

In Figure 22.5 the constant failsym, which represents failure, is defined to be
the symbol @. If you wanted to be able to have @ as an ordinary return value, you
could make failsym agensym instead.

The other nondeterministic choice operator, choose-bind, has a dlightly
different form. It should be given a symboal, alist of choices, and a body of code.
It will do achoose on thelist of choices, bind the symbol to the value chosen, and
evaluate the body of code:

22.4 COMMON LISP IMPLEMENTATION

295

(defparameter *paths* nil)
(defconstant failsym ’@)

(defmacro choose (&rest choices)
(if choices
‘ (progn
,@(mapcar #’(lambda (c)

(reverse (cdr choices)))
, (car choices))
’(fail)))

(defmacro choose-bind (var choices &body body)
“(cb #’(lambda (,var) ,@body) ,choices))

(defun cb (fn choices)
(if choices

(progn

(if (cdr choices)
(push #’(lambda () (cb fn (cdr choices)))
xpaths*))

(funcall fn (car choices)))

(fail)))

(defun fail ()
(if *pathsx*
(funcall (pop *paths*))
failsym))

Figure 22.5: Nondeterministic operatorsin Common Lisp.

‘(push #’(lambda () ,c) #*pathsx*))

> (choose-bind x °’(marrakesh strasbourg vegas)
(format nil "Let’s go to "A." x))

"Let’s go to MARRAKESH."

> (fail)

"Let’s go to STRASBOURG."

It is only for convenience that the Common Lisp implementation provides two
choice operators. You could get the effect of choose from choose-bind by

always trandating

(choose (foo) (bar))

296 NONDETERMINISM

into

(choose-bind x ’ (1 2)
(case x
(1 (foo0))
(2 (bar))))

but programs are easier to read if we have a separate operator for this case.

The Common Lisp choice operators store the bindings of relevant variables
using closures and variable capture. As macros, choose and choose-bind get
expanded within the lexical environment of the containing expressions. Notice
that what they push onto *paths* isaclosure over the choiceto be saved, locking
in all the bindings of the lexical variables referred to within it. For example, in
the expression

(let ((x 2))
(choose
+x 1)
(+ x 100)))

the value of x will be needed when the saved choices are restarted. Thisis why
choose iswritten to wrap its arguments in lambda-expressions. The expression
above gets macroexpanded into:

(Qet ((x 2))
(progn
(push #’(lambda () (+ x 100))
paths)
(+ x 1))

The object which gets stored on *paths* isaclosure containing apointer to x. It
isthe need to preserve variablesin closureswhich dictates the difference between
the syntax of the Scheme and Common Lisp choice operators.

If we use choose and fail together with the continuation-passing macros
of Chapter 20, a pointer to our continuation variable *cont* will get saved as
well. By defining functions with =defun, calling them with =bind, and having
them return values with =values, we will be able to use nondeterminismin any
Common Lisp program.

With these macros, we can successfully run the example in which the nonde-
terministic choice occurs in a subroutine. Figure 22.6 shows the Common Lisp
version of parlor-trick, which worksasit did in Scheme:

2If desired, the exported interface to this code could consist of just a single operator, because
(fail) isequivalent to (choose).

22.4 COMMON LISP IMPLEMENTATION

297

(=defun two-numbers ()
(choose-bind n1 (0 1 2 3 4
(choose-bind n2 (0 1 2 3
(=values ni1 n2))))

5)
4 5)

(=defun parlor-trick (sum)
(=bind (n1 n2) (two-numbers)
(if (= (+ n1 n2) sum)
‘(the sum of ,n1 ,n2)
(fail))))

Figure 22.6: Common Lisp choicein a subroutine.

> (parlor-trick 7)
(THE SUM OF 2 5)

This works because the expression
(=values ni1 n2)

gets macroexpanded into

(funcall *cont* nl n2)

within the choose-binds. Each choose-bind isin turn macroexpanded into a
closure, which keeps pointersto all the variablesreferred to in the body, including

xcont.

The restrictions on the use of choose, choose-bind, and fail arethe same
as the restrictions given in Figure 20.5 for code which uses the continuation-
passing macros. Where a choice expression occurs, it must be the last thing to
be evaluated. Thus if we want to make sequentia choices, in Common Lisp the

choices have to be nested:

> (choose-bind first-name ’(henry william)
(choose-bind last-name ’(james higgins)

(=values (list first-name last-name))))

(HENRY JAMES)

> (fail)

(HENRY HIGGINS)
> (fail)
(WILLIAM JAMES)

298 NONDETERMINISM

which will, as usual, result in depth-first search.

The operatorsdefined in Chapter 20 claimed theright to bethelast expressions
evaluated. Thisright is now preempted by the new layer of macros; an =values
expression should appear within a choose expression, and not vice versa. That
is,

(choose (=values 1) (=values 2))

will work, but
(=values (choose 1 2)) ; wrong

will not. (In the latter case, the expansion of the choose would be unable to
capture the instance of *cont* in the expansion of the=values.)

As long as we respect the restrictions outlined here and in Figure 20.5, non-
deterministic choice in Common Lisp will now work as it does in Scheme. Fig-
ure 22.7 shows a Common Lisp version of the nondeterministic tree search pro-
gram given in Figure 22.2. The Common Lisp descent is a direct tranglation,
though it comes out slightly longer and uglier.

We now have Common Lisp utilities which make it possible to do nondeter-
ministic search without explicit backtracking. Having taken trouble to write this
code, we can reap the benefits by writing in very few lines programswhich would
otherwise be large and messy. By building another layer of macros on top of
those presented here, we will be ableto write an ATN compiler in one page of code
(Chapter 23), and a sketch of Prolog in two (Chapter 24).

Common Lisp programs which use choose should be compiled with tail-
recursion optimization—not just to make them faster, but to avoid running out of
stack space. Programs which “return” values by calling continuation functions
never actually return until the final fail. Without the optimization of tail-calls,
the stack would just grow and grow.

225 Cuts

This section shows how to use cuts in Scheme programs which do nondetermin-
istic choice. Though the word cut comes from Prolog, the concept belongs to
nondeterminism generally. You might want to use cutsin any program that made
nondeterministic choices.

Cutsare easier to understand when considered independently of Prolog. Let's
imagine areal-life example. Suppose that the manufacturer of Chocoblob candies
decides to run a promation. A small number of boxes of Chocoblobs will also
contain tokens entitling the recipient to valuable prizes. To ensure fairness, no
two of the winning boxes are sent to the same city.

225 CuTS 299

> (=defun descent (nl1l n2)
(cond ((eq nl n2) (=values (list n2)))
((kids n1) (choose-bind n (kids nl)
(=bind (p) (descent n n2)
(=values (cons nl p)))))
(t (fail))))
DESCENT
> (defun kids (n)
(case n

(a ’(b c))

(b ’(d e))

(c 7(d £))

£ (g
KIDS
> (descent ’a ’g)
(ACF G
> (fail)
Q
> (descent ’a ’d)
(A B D)
> (fail)
(A CD)
> (fail)
Q
> (descent ’a ’h)
Q

Figure 22.7: Nondeterministic search in Common Lisp

After the promotion has begun, it emergesthat the tokens are small enough to
be swallowed by children. Hounded by visions of lawsuits, Chocoblob lawyers
begin afrantic search for all the special boxes. Within each city, thereare multiple
stores that sell Chocoblobs; within each store, there are multiple boxes. But the
lawyers may not have to open every box: oncethey find a coin-containing box in
agiven city, they do not have to search any of the other boxesin that city, because
each city has at most one special box. To realizethisisto do acut.

What's cut is a portion of the search tree. For Chocoblobs, the search tree
existsphysically: theroot nodeis at the company’shead office; the children of this
node are the cities where the special boxes were sent; the children of those nodes
are the stores in each city; and the children of each store represent the boxes in

300 NONDETERMINISM

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(newline)
(let* ((store (choose ’(1 2)))
(box (choose ’(1 2))))
(let ((triple (list city store box)))
(display triple)
(if (coin? triple)
(display ’c))
(fail)))))

(define (coin? x)
(member x ’((la 1 2) (ny 1 1) (bos 2 2))))

Figure 22.8: Exhaustive Chocoblob search.

that store. When the lawyers searching this tree find one of the boxes containing
a coin, they can prune off all the unexplored branches descending from the city
they’rein now.

Cuts actually take two operations: you can do a cut when you know that part
of the search tree is useless, but first you have to mark the tree at the point where
it can be cut. In the Chocoblob example, common sense tells us that the tree is
marked as we enter each city. It's hard to describe in abstract termswhat a Prolog
cut does, becausethe marksareimplicit. With an explicit mark operator, the effect
of acut will be more easily understood.

Figure 22.8 shows a program that nondeterministically searches a smaller
version of the Chocoblob tree. As each box is opened, the program displaysalist
of (city store box). If the box containsacoin, ac is printed after it:

> (find-boxes)

(LA 1 1)(LA 1 2)C(LA 2 1)(LA 2 2)

(NY 1 1)C(NY 1 2)(NY 2 1) (NY 2 2)
(BOS 1 1)(BOS 1 2)(B0OS 2 1) (BOS 2 2)C
Q

To implement the optimized search technique discovered by the Chocoblob
lawyers, we need two new operators: mark and cut. Figure 22.9 shows one way
to define them. Whereas nondeterminism itself can be understood independently
of any particular implementation, pruning the search tree is an optimization tech-
nique, and depends very much on how choose is implemented. The mark and

225 CuTS 301

(define (mark) (set! *paths* (cons fail *paths*)))

(define (cut)
(cond ((null? *pathsx))
((equal? (car *paths*) fail)
(set! xpaths* (cdr *paths*)))

(else
(set! xpaths* (cdr *paths*))
(cut))))

Figure 22.9: Marking and pruning search trees.

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(mark) ;
(newline)
(let* ((store (choose ’(1 2)))
(box (choose ’ (1 2))))
(let ((triple (list city store box)))
(display triple)
(if (coin? triple)
(begin (cut) (display ’c))) ;
(faill)))))

Figure 22.10: Pruned Chocoblob search.

cut defined in Figure 22.9 are suitable for use with the depth-first implementation
of choose (Figure 22.4).

Thegeneral ideaisfor mark to storemarkersin *paths*, thelist of unexplored
choice-points. Calling cut pops *pathsx* al the way down to the most recent
marker. What should we use as a marker? We could use e.g. the symbol m, but
that would require usto rewrite fail to ignore the ms when it encountered them.
Fortunately, since functions are data objects too, thereis at least one marker that
will allow usto use fail asis: the function fail itself. Thenif fail happens
on amarker, it will just call itself.

Figure 22.10 shows how these operators would be used to prune the search
treein the Chocoblob case. (Changed lines are indicated by semicolons.) We call
mark upon choosing a city. At this point, *paths* contains one continuation,

302 NONDETERMINISM

Figure 22.11: A directed graph with aloop.

representing the search of the remaining cities.

If wefind abox withacoininit, wecal cut, which sets *paths* back to the
valueit had at thetime of themark. The effects of the cut are not visible until the
next call to fail. But when it comes, after the display, the next fail sendsthe
search all the way up to the topmost choose, even if there would otherwise have
been live choice-pointslower in the search tree. The upshot is, as soon as we find
abox with acoin init, we resume the search at the next city:

> (find-boxes)
(LA 1 1)(@A 1 2)C

(NY 1 1)C
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

In this case, we open seven boxes instead of twelve.

22.6 TrueNondeterminism

A deterministic graph-searching program would have to take explicit steps to
avoid getting caught in a circular path. Figure 22.11 shows a directed graph
containing a loop. A program searching for a path from node a to node e risks
getting caught in the circular path (a, b, c). Unless adeterministic searcher used
randomization, breadth-first search, or checked explicitly for circular paths, the
search might never terminate. Theimplementation of path shownin Figure22.12
avoids circular paths by searching breadth-first.

In principle, nondeterminism should save us the trouble of even considering
circular paths. The depth-first implementation of choose and fail given in Sec-
tion 22.3 is vulnerable to the problem of circular paths, but if we were being
picky, we would expect nondeterministic choose to be able to select an object

22.6 TRUE NONDETERMINISM 303

(define (path nodel node2)
(bf-path node2 (list (list nodel))))

(define (bf-path dest queue)
(if (null? queue)
’Q
(let* ((path (car queue))
(node (car path)))
(if (eq? node dest)
(cdr (reverse path))
(bf-path dest
(append (cdr queue)
(map (lambda (n)
(cons n path))
(neighbors node))))))))

Figure 22.12: Deterministic search.

(define (path nodel node2)
(cond ((null? (neighbors nodel)) (fail))
((memq node2 (neighbors nodel)) (list node2))
(else (let ((n (true-choose (neighbors nodel))))
(cons n (path n node2))))))

Figure 22.13: Nondeterministic search.

which meets any computabl e specification, and this caseis no exception. Using a
correct choose, we should be able to write the shorter and clearer version of path
shown in Figure 22.13.

This section shows how to implement versions choose and fail which are safe
even from circular paths. Figure 22.14 contains a Scheme implementation of true
nondeterministic choose and fail. Programs which use these versions of choose
andfail should find solutionswhenever the equival ent nondeterministic algorithms
would, subject to hardware limitations.

Theimplementation of true-choose definedin Figure 22.14 works by treat-
ing the list of stored paths as a queue. Programs using true-choose will search
their state-space breadth-first. When the program reaches a choice-point, contin-
uations to follow each choice are appended to the end of the list of stored paths.

304 NONDETERMINISM

(define *paths* ())
(define failsym ’@)

(define (true-choose choices)
(call-with-current-continuation
(lambda (cc)
(set! *paths* (append *paths*
(map (lambda (choice)
(lambda () (cc choice)))
choices)))

(fail))))
(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail
(lambda ()
(if (null? *pathsx*)
(cc failsym)
(let ((p1 (car *pathsx*)))
(set! xpaths* (cdr *pathsx))
(P13

Figure 22.14: Correct choose in Scheme.

(Scheme's map returns the same values as Common Lisp's mapcar.) After this
thereisacall to fail, whichisunchanged.

This version of choose would alow the implementation of path defined in
Figure 22.13 to find a path—indeed, the shortest path—from a to e in the graph
displayed in Figure 22.11.

Although for the sake of completeness this chapter has provided correct ver-
sions of choose and fail, the original implementations will usually suffice. The
value of a programming language abstraction is not diminished just because its
implementation isn't formally correct. In some languages we act as if we had
access to al the integers, even though the largest one may be only 32767. As
long as we know how far we can push the illusion, there is little danger to it—
little enough, at least, to make the abstraction a bargain. The conciseness of
the programs presented in the next two chapters is due largely to their use of
nondeterministic choose and fail.

23

Parsing with ATNs

This chapter shows how to write a nondeterministic parser as an embedded lan-
guage. The first part explains what ATN parsers are, and how they represent
grammar rules. The second part presents an ATN compiler which uses the nonde-
terministic operators defined in the previous chapter. The final sections present a
small ATN grammar, and show it in action parsing sample input.

23.1 Background

Augmented Transition Networks, or ATNS, are a form of parser described by
Bill Woods in 1970. Since then they have become a widely used formalism for
parsing natural language. In an hour you can write an ATN grammar which parses
interesting English sentences. For this reason, people are often held in a sort of
spell when they first encounter them.

In the 1970s, some people thought that ATNS might one day be components
of truly intelligent-seeming programs. Though few hold this position today, ATNS
have found a niche. They aren’t as good as you are at parsing English, but they
can il parse an impressive variety of sentences.

ATNs are useful if you observe the following four restrictions:

1. Usethem in a semantically limited domain—in a front-end to a particular
database, for example.

2. Don't feed them very difficult input. Among other things, don’'t expect
them to understand wildly ungrammatical sentencesthe way people can.

305

306 PARSING WITH ATNS

3. Only use them for English, or other languages in which word order deter-
mines grammatical structure. ATNswould not be useful in parsing inflected
languageslike Latin.

4. Don't expect them to work all thetime. Usethem in applicationswhereit’s
helpful if they work ninety percent of the time, not those whereit's critical
that they work a hundred percent of the time.

Within theselimits there are plenty of useful applications. The canonical example
is as the front-end of a database. If you attach an ATN-driven interface to such
a system, then instead of making a formal query, users can ask questionsin a
constrained form of English.

23.2 TheFormalism

To understand what ATNs do, we should recall their full name: augmented transi-
tion networks. A transition network is a set of nodes joined together by directed
arcs—essentialy, a flow-chart. One node is designated the start node, and some
other nodes are designated terminal nodes. Conditions are attached to each arc,
which have to be met before the arc can be followed. There will be an input
sentence, with a pointer to the current word. Following some arcs will cause the
pointer to be advanced. To parse a sentence on a transition network is to find a
path from the start node to some termina node, along which all the conditions
can be met.
ATNs add two featuresto this model:

1. ATNshaveregisters—named slots for storing away information asthe parse
proceeds. Aswell as performing tests, arcs can modify the contents of the
registers.

2. ATNs are recursive. Arcs may require that, in order to follow them, the
parse must successfully make it through some sub-network.

Terminal nodes use the information which has accumulated in the registers to
build list structures, which they return in much the same way that functionsreturn
values. In fact, with the exception of being nondeterministic, ATNS behave a lot
like a functional programming language.

TheATN defined in Figure 23.1 is nearly the simplest possible. It parses noun-
verb sentences of the form “ Spot runs.” The network representation of thisATN is
shown in Figure 23.2.

What doesthisATN do when giventheinput (spot runs)? Thefirst nodehas
one outgoing arc, a cat, or category arc, leading to node s2. It says, effectively,

23.2 THE FORMALISM 307

(defnode s
(cat noun s2
(setr subj *)))

(defnode s2
(cat verb s3
(setr v *)))

(defnode s3
(up ‘(sentence
(subject ,(getr subj))
(verb , (getr v)))))

Figure 23.1: A very small ATN.

Figure 23.2; Graph of asmall ATN.

you can follow me if the current word is a houn, and if you do, you must store
the current word (indicated by *) in the subj register. So we leave this nodewith
spot stored in the subj register.

There is always a pointer to the current word. Initialy it points to the first
word in the sentence. When cat arcs are followed, this pointer is moved forward
one. So when we get to node s2, the current word is the second, runs. The
second arc isjust like the first, except that it is looking for averb. It finds runs,
storesit in register v, and proceedsto s3.

Thefinal node, s3, hasonly apop, or terminal, arc. (Nodeswith pop arcshave
dashed borders.) Because we arrive at the pop arc just as we run out of input, we
have a successful parse. The pop arc returns the backquoted expression within it:

(sentence (subject spot)
(verb rumns))

An ATN correspondsto the grammar of the languageit isdesigned to parse. A
decent-sized ATN for parsing English will have a main network for parsing sen-

308 PARSING WITH ATNS

tences, and sub-networks for parsing noun-phrases, prepositional phrases, modi-
fier groups, and so on. The need for recursion is obvious when we consider that
noun-phrasesmay contain prepositional phraseswhich may contain noun-phrases,
ad infinitum, asin

“the key on the table in the hall of the house on the hill”

23.3 Nondeter minism

Although we didn’t see it in this small example, ATNS are nondeterministic. A
node can have several outgoing arcs, more than one of which could be followed
with a given input. For example, a reasonably good ATN should be able to parse
bothimperative and declarative sentences. Thusthefirst nodecould have outgoing
cat arcs for both nouns (in statements) and verbs (in commands).

What if the first word of the sentence is “time,” which is both a houn and a
verb? How does the parser know which arc to follow? When ATNs are described
as nondeterministic, it means that users can assume that the parser will correctly
guess which arc to follow. If some arcs lead only to failed parses, they won't be
followed.

In reality the parser cannot look into the future. It simulates correct guessing
by backtracking when it runs out of arcs, or input. But all the machinery of
backtrackingisinserted automatically into the code generated by the ATN compiler.
We can write ATNs as if the parser really could guess which arcs to follow.

Like many (perhaps most) programs which use nondeterminism, ATNS use
the depth-first implementation. Experience parsing English quickly teaches one
that any given sentence has a dew of legal parsings, most of them junk. On a
conventional single-processor machine, oneis better off trying to get good parses
quickly. Instead of getting all the parses at once, we get just the most likely. If
it has a reasonable interpretation, then we have saved the effort of finding other
parses; if not, we can call fail to get more.

To control the order in which parses are generated, the programmer needs to
have some way of controlling the order in which choose tries alternatives. The
depth-firstimplementationisn’t theonly way of controllingthe order of the search.
Any implementati on except arandomizing oneimposes some kind of order. How-
ever, ATNS, like Prolog, have the depth-first implementation conceptually built-in.
Inan ATN, thearcsleaving anode aretried in the order in which they were defined.
This convention allows the programmer to order arcs by priority.

23.4 AN ATN COMPILER 309

23.4 An ATN Compiler

Ordinarily, an ATN-based parser needs three components: the ATN itself, an inter-
preter for traversing it, and a dictionary which can tell it, for example, that “runs’
isaverb. Dictionaries are a separate topic—here we will use arudimentary hand-
made one. Nor will we need to deal with a network interpreter, because we will
trandate the ATN directly into Lisp code. The program described hereis called an
ATN compiler becauseit transformsawhole ATN into code. Nodesare transformed
into functions, and arcs become blocks of code within them.

Chapter 6 introduced the use of functions as a form of representation. This
practice usually makes programs faster. Here it means that there will be no
overhead of interpreting the network at runtime. The disadvantageisthat thereis
less to inspect when something goes wrong, especially if you're using a Common
Lisp implementation which doesn’'t provide function-lambda-expression.

Figure 23.3 contains all the code for transforming ATN nodes into Lisp code.
The macro defnode is used to define nodes. It generates little code itself, just a
choose over the expressions generated for each of the arcs. The two parameters
of a node-function get the following values: pos is the current input pointer (an
integer), and regs isthe current set of registers (alist of assoc-lists).

Themacro defnode definesamacro with the same name asthe corresponding
node. Node s will be defined as macro s. This convention enables arcs to know
how to refer to their destination nodes—they just call the macro with that name.
It also means that you shouldn’t give nodes the names of existing functions or
macros, or these will be redefined.

Debugging ATNS requires some sort of trace facility. Because nodes become
functions, we don’'t have to write our own. We can use the built-in Lisp function
trace. As mentioned on page 266, using =defun to define nodes means that we
can trace parses going through nodemods by saying (trace =mods).

Thearcswithinthebody of anode aresimply macro calls, returning codewhich
gets embedded in the node function being made by defnode. The parser uses
nondeterminism at each node by executing a choose over the code representing
each of the arcs leaving that node. A node with several outgoing arcs, say

(defnode foo
<arc 1>
<arc 2>)

gets trandated into a function definition of the following form:

(=defun foo (pos regs)
(choose
<translation of arc 1>
<translation of arc 2>))

310 PARSING WITH ATNS

(defmacro defnode (name &rest arcs)
‘(=defun ,name (pos regs) (choose ,@arcs)))

(defmacro down (sub next &rest cmds)
‘(=bind (* pos regs) (,sub pos (cons nil regs))
(,next pos ,(compile-cmds cmds))))

(defmacro cat (cat next &rest cmds)
“(if (= (length *sent*) pos)
(fail)
(let ((*x (nth pos *sentx)))
(if (member ’,cat (types *))
(,next (1+ pos) ,(compile-cmds cmds))

(fail)))))

(defmacro jump (next &rest cmds)
“(,next pos ,(compile-cmds cmds)))

(defun compile-cmds (cmds)
(if (null cmds)
‘regs
“(,0(car cmds) ,(compile-cmds (cdr cmds)))))

(defmacro up (expr)
“(let ((* (nth pos *sentx)))
(=values ,expr pos (cdr regs))))

(defmacro getr (key &optional (regs ’regs))
“(let ((result (cdr (assoc ’,key (car ,regs)))))
(if (cdr result) result (car result))))

(defmacro set-register (key val regs)
“(cons (cons (cons ,key ,val) (car ,regs))
(cdr ,regs)))

(defmacro setr (key val regs)
‘(set-register ’,key (list ,val) ,regs))

(defmacro pushr (key val regs)
‘(set-register ’,key
(cons ,val (cdr (assoc ’,key (car ,regs))))
,regs))

Figure 23.3: Compilation of nodes and arcs.

234 AN ATN COMPILER 311

(defnode s

(down np s/subj
(setr mood ’decl)
(setr subj *))

(cat v v
(setr mood ’imp)
(setr subj ’(unp (prom you)))
(setr aux nil)
(setr v *)))

is macroexpanded into:

(=defun s (pos regs)
(choose
(=bind (* pos regs) (np pos (cons nil regs))
(s/subj pos
(setr mood ’decl
(setr subj * regs))))
(if (= (length *sent*) pos)
(fail)
(let ((* (nth pos *sentx)))
(if (member ’v (types *))
(v (1+ pos)
(setr mood ’imp
(setr subj ’(np (pron you))
(setr aux nil

(setr v * regs)))))
(£ail))))))

Figure 23.4: Macroexpansion of a node function.

Figure 23.4 shows the macroexpansion of the first node in the sample ATN of
Figure 23.11. When called at runtime, node functionslike s nondeterministically
choose an arc to follow. The parameter pos will be the current position in the
input sentence, and regs the current registers.

Cat arcs, as we saw in our original example, insist that the current word of
input belong to a certain grammatical category. Within the body of a cat arc, the
symbol * will be bound to the current word of input.

Push arcs, defined with down, require successful calls to sub-networks. They
take two destination nodes, the sub-network destination sub, and the next node
in the current network, next. Notice that whereas the code generated for a cat

312 PARSING WITH ATNS

arc simply calls the next node in the network, the code generated for a push
arc uses =bind. The push arc must successfully return from the sub-network
before continuing on to the node which follows it. A clean set of registers (nil)
gets consed onto the front of regs before they are passed to the sub-network.
In the bodies of other types of arcs, the symbol * will be bound to the current
word of input, but in push arcs it will be bound to the expression returned by the
sub-network.

Jumparcsarelikeshort-circuits. The parser skipsright acrossto thedestination
node—no tests are required, and the input pointer isn’t advanced.

Thefina type of arc is the pop arc, defined with up. Pop arcs are unusual in
that they don’t have adestination. Just asaLisp return leads not to asubroutine
but the calling function, a pop arc |eads not to anew node but back to the“ calling”
push arc. The =values in apop arc “returns’ avalue to the =bind in the most
recent push arc. But, as Section 20.2 explained, what's happening is not a normal
Lispreturn: the body of the =bind has been wrapped up into a continuation and
passed down as a parameter through any number of arcs, until the =values of the
pop arc finally callsit on the “return” values.

Chapter 22 described two versions of nondeterministic choose: afast choose
(page 293) that wasn't guaranteed to terminate when therewereloopsin the search
space, and a slower true-choose (page 304) which was safe from such loops.
There can be cyclesin an ATN, of course, but as long as at least one arc in each
cycle advances the input pointer, the parser will eventually run off the end of the
sentence. The problem arises with cycles which don’t advance the input pointer.
Here we have two aternatives:

1. Use the slower, correct nondeterministic choice operator (the depth-first
version given on page 396).

2. Use the fast choose, and specify that it is an error to define networks
containing cycles which could be traversed by following just jump arcs.

The code defined in Figure 23.3 takes the second approach.

The last four definitions in Figure 23.3 define the macros used to read and
set registers within arc bodies. In this program, register sets are represented as
assoc-lists. An ATN deals not with sets of registers, but sets of sets of registers.
When the parser moves down to a sub-network, it gets a clean set of registers
pushed on top of the existing ones. Thus the whole collection of registers, at any
giventime, isalist of assoc-lists.

The predefined register operatorswork on the current, or topmost, set of regis-
ters: getr readsaregister; setr setsone; and pushr pushesavalueinto one. Both
getr and pushr use the primitive register manipulation macro set-register.

234 AN ATN COMPILER 313

Note that registers don’t have to be declared. If set-register issent acertain
name, it will create aregister with that name.

The register operators are al completely nondestructive. Cons, cons, cons,
says set-register. This makesthem slow and generates alot of garbage, but,
as explained on page 261, objects used in apart of a program where continuations
are made should not be destructively modified. An object in one thread of control
may be shared by another thread which is currently suspended. In this case, the
registers found in one parse will share structure with the registersin many of the
other parses. If speed became an issue, we could store registersin vectorsinstead
of assoc-lists, and recycle used vectorsinto a common pool.

Push, cat, and jump arcs can al contain bodies of expressions. Ordinarily
thesewill bejust setrs. By calling compile-cmds ontheir bodies, the expansion
functions of these arc types string a series of setrsinto asingle expression:

> (compile-cmds ’((setr a b) (setr c d)))
(SETR A B (SETR C D REGS))

Each expression has the next expression inserted as its last argument, except the
last, which gets regs. So a series of expressions in the body of an arc will be
transformed into a single expression returning the new registers.

Thisapproach allows usersto insert arbitrary Lisp codeinto the bodies of arcs
by wrapping it in aprogn. For example:

> (compile-cmds ’((setr a b)
(progn (princ "ek!"))
(setr c d)))
(SETR A B (PROGN (PRINC "ek!") (SETR C D REGS)))

Certain variables are left visible to code occurring in arc bodies. The sentence
will bein the global *sent*. Two lexical variables will also be visible: pos,
containing the current input pointer, and regs, containing the current registers.
This is another example of intentional variable capture. If it were desirable to
prevent the user from referring to these variables, they could be replaced with
gensyms.

Themacrowith-parses,definedin Figure 23.5, givesusaway of invokingan
ATN. It should be called with the name of a start node, an expression to be parsed,
and a body of code describing what to do with the returned parses. The body of
codewithinawith-parses expressionwill be evaluated oncefor each successful
parse. Within the body, the symbol parse will be bound to the current parse.
Superficially with-parses resembles operators like dolist, but underneath it
uses backtracking search instead of simpleiteration. A with-parses expression
will return @, because that'swhat fail returnswhen it runs out of choices.

314 PARSING WITH ATNS

(defmacro with-parses (node sent &body body)
(with-gensyms (pos regs)
¢ (progn

(setq *sent* ,sent)

(setq *paths* nil)

(=bind (parse ,pos ,regs) (,node 0 ’(nil))

(if (= ,pos (length *sent*))

(progn ,@body (fail))
(fail))))))

Figure 23.5: Toplevel macro.

Before going on to look at a more representative ATN, let’s ook at a parsing
generated from the tiny ATN defined earlier. The ATN compiler (Figure 23.3)
generates code which calls types to determine the grammatical roles of aword,
so first we have to give it some definition:

(defun types (w)
(cdr (assoc w ’((spot noun) (runs verb)))))

Now we just cal with-parses with the name of the start node as the first
argument:

> (with-parses s ’(spot runs)

(format t "Parsing: "A~Y" parse))
Parsing: (SENTENCE (SUBJECT SPOT) (VERB RUNS))
Q

235 A SampleATN

Now that the whole ATN compiler has been described, we can go on to try out
some parses using a sample network. In order to make an ATN parser handle a
richer variety of sentences, you make the ATNS themsel ves more complicated, not
the ATN compiler. The compiler presented here is atoy mainly in the sense that
it's slow, not in the sense of having limited power.

The power (as distinct from speed) of a parser is in the grammar, and here
limited space really will force usto use atoy version. Figures 23.8 through 23.11
define the ATN (or set of ATNS) represented in Figure 23.6. This network is just
big enough to yield several parsings for the classic parser fodder “Timeflies like
an arrow.”

235 A SAMPLE ATN 315

Figure 23.6: Graph of alarger ATN.

(defun types (word)
(case word

((do does did) ’(aux v))
((time times) ’(n v))
((fly flies) ’(n v))
((like) ’(v prep))
((1iked likes) ’(v))
((a an the) ’(det))
((arrow arrows) ’(n))
((i you he she him her it) ’(promn))))

Figure 23.7: Nominal dictionary.

We need adlightly larger dictionary to parse more complex input. Thefunction
types (Figure 23.7) provides a dictionary of the most primitive sort. It definesa
22-word vocabulary, and associates each word with alist of one or more simple
grammatical roles.

316 PARSING WITH ATNS

(defnode mods
(cat n mods/n
(setr mods *)))

(defnode mods/n
(cat n mods/n
(pushr mods *))
(up ‘(n-group ,(getr mods))))

Figure 23.8: Sub-network for strings of modifiers.

The components of an ATN are themselves ATNS. The smallest ATN in our set
istheonein Figure 23.8. It parses strings of modifiers, which in this case means
just strings of nouns. The first node, mods, accepts a noun. The second node,
mods/n, can either look for more nouns, or return a parsing.

Section 3.4 explained how writing programsin afunctional style makesthem
easier to test:

1. Inafunctional program, components can be tested individually.
2. InLisp, functions can be tested interactively, in the toplevel 1oop.

Together these two principles alow interactive development: when we write
functional programsin Lisp, we can test each piece as we write it.

ATNs are so like functional programs—in thisimplementation, they macroex-
pand into functional programs—that the possibility of interactive development
applies to them as well. We can test an ATN starting from any node, ssmply by
giving its name as the first argument to with-parses:

> (with-parses mods ’(time arrow)
(format t "Parsing: “A~)" parse))

Parsing: (N-GROUP (ARROW TIME))

Q

Thenext two networks haveto bediscussed together, because they are mutually
recursive. The network defined in Figure 23.9, which begins with the node np,
is used to parse noun phrases. The network defined in Figure 23.10 parses
prepositional phrases. Noun phrases may contain prepositional phrases and vice
versa, so the two networks each contain a push arc which calls the other.

The noun phrase network contains six nodes. The first node, np has three
choices. If it reads a pronoun, then it can move to node pron, which pops out of
the network:

235 A SAMPLE ATN

317

(defnode np
(cat det np/det
(setr det *))
(jump np/det
(setr det nil))
(cat pron pron
(setr n *)))

(defnode pron
(up ‘(np (promoun ,(getr n)))))

(defnode np/det
(down mods np/mods
(setr mods *))
(jump np/mods
(setr mods nil)))

(defnode np/mods
(cat n np/n
(setr n *)))

(defnode np/n
(up ‘(np (det ,(getr det))
(modifiers , (getr mods))
(noun , (getr n))))
(down pp np/pp
(setr pp *)))

(defnode np/pp
(up ‘(np (det ,(getr det))
(modifiers , (getr mods))
(noun , (getr n))
, (getr pp))))

Figure 23.9: Noun phrase sub-network.

> (with-parses np ’(it)

(format t "Parsing: "A~Y" parse))
Parsing: (NP (PRONOUN IT))
Q

318 PARSING WITH ATNS

(defnode pp
(cat prep pp/prep
(setr prep *)))

(defnode pp/prep
(down np pp/np
(setr op *)))

(defnode pp/np
(up ‘(pp (prep ,(getr prep))
(obj ,(getr op)))))

Figure 23.10: Prepositional phrase sub-network.

Both the other arcslead to node np/det: one arc reads a determiner (e.g. “the”),
and the other arc smply jumps, reading no input. At node np/det, both arcs
lead to np/mods; np/det has the option of pushing to sub-network mods to pick
up a string of modifiers, or jumping. Node np-mods reads a houn and continues
to np/n. This node can either pop a result, or push to the prepositiona phrase
network to try to pick up a prepositional phrase. The final node, np/pp, pops a
result.

Different types of noun phrases will have different parse paths. Here are two
parsings on the noun phrase network:

> (with-parses np ’(arrows)
(pprint parse))
(NP (DET NIL)
(MODIFIERS NIL)
(NOUN ARROWS))
Q
> (with-parses np ’(a time fly like him)
(pprint parse))
(NP (DET A)
(MODIFIERS (N-GROUP TIME))
(NOUN FLY)
(PP (PREP LIKE)
(0BJ (NP (PRONOUN HIM)))))
Q

The first parse succeeds by jumping to np/det, jumping again to np/mods,
reading a noun, then popping a np/n. The second never jumps, pushing first for

235 A SAMPLE ATN

319

(defnode s

(down np s/subj
(setr mood ’decl)
(setr subj *))

(cat v v
(setr mood ’imp)
(setr subj ’(unp (prom you)))
(setr aux nil)
(setr v *)))

(defnode s/subj
(cat v v
(setr aux nil)
(setr v *)))

(defnode v
(up ‘(s (mood ,(getr mood))
(subj , (getr subj))
(vel (aux , (getr aux))
(v ,(getr v)))))
(down np s/obj
(setr obj *)))

(defnode s/obj
(up ‘(s (mood ,(getr mood))
(subj , (getr subj))
(vel (aux , (getr aux))
(v ,(getr v)))
(obj ,(getr obj)))))

Figure 23.11: Sentence network.

a string of modifiers, and again for a prepositional phrase. As is often the case
with parsers, expressions which are syntactically well-formed are such nonsense
semantically that it's difficult for humans even to detect the syntactic structure.
Here the noun phrase “atime fly like him” has the same form as “a Lisp hacker

like him.”

Now all we need isanetwork for recognizing sentence structure. The network
shown in Figure 23.11 parses both commands and statements. The start node
is conventionally called s. The first node leaving it pushes for a noun phrase,

320 PARSING WITH ATNS

> (with-parses s ’(time flies like an arrow)
(pprint parse))

(S (MOOD DECL)
(SUBJ (NP (DET NIL)
(MODIFIERS (N-GROUP TIME))
(NOUN FLIES)))
(VCL (AUX NIL)
(V LIKE))
(0BJ (NP (DET AN)
(MODIFIERS NIL)
(NOUN ARROW))))

(S (MOOD IMP)
(SUBJ (NP (PRON YOU)))
(VCL (AUX NIL)
(V TIME))
(0BJ (NP (DET NIL)
(MODIFIERS NIL)
(NOUN FLIES)
(PP (PREP LIKE)
(0BJ (NP (DET AN)
(MODIFIERS NIL)
(NOUN ARROW)))))))

Figure 23.12: Two parsings for a sentence.

which will be the subject of the sentence. The second outgoing arc reads a verb.
When a sentence is syntactically ambiguous, both arcs could succeed, ultimately
yielding two or more parsings, asin Figure 23.12. Thefirst parsing is analogous
to“Island nationslike a navy,” and the second is analogousto “ Find someone like
apoliceman.” More complex ATNs are ableto find six or more parsingsfor “ Time
flieslike an arrow.”

The ATN compiler in this chapter is presented more as adistillation of the idea
of an ATN than as production software. A few obvious changes would make this
code much more efficient. When speed isimportant, the wholeidea of simulating
nondeterminism with closures may be too slow. But when it isn’t essential, the
programming techniques described here lead to very concise programs.

24

Prolog

This chapter describes how to write Prolog as an embedded language. Chapter 19
showed how to write a program which answered complex queries on databases.
Here we add one new ingredient: rules, which makeit possibleto infer facts from
those already known. A set of rules defines atree of implications. In order to use
rules which would otherwise imply an unlimited number of facts, we will search
thisimplication tree nondeterministically.

Prolog makes an excellent example of an embedded language. It combines
three ingredients: pattern-matching, nondeterminism, and rules. Chapters 18
and 22 give us the first two independently. By building Prolog on top of the
pattern-matching and nondeterministic choice operators we have already, we will
have an example of areal, multi-layer bottom-up system. Figure 24.1 shows the
layers of abstraction involved.

The secondary aim of this chapter is to study Prolog itself. For experienced
programmers, the most convenient explanation of Prolog may be a sketch of its
implementation. Writing Prolog in Lisp is particularly interesting, because it
brings out the similarities between the two languages.

24.1 Concepts

Chapter 19 showed how to write a database system which would accept complex
queries containing variables, and generate all the bindings which made the query
truein the database. Inthefollowing example, (after calling c1ear-db) we assert
two facts and then query the database:

321

322 PROLOG

Figure 24.1: Layers of abstraction.

> (fact painter reynolds)

(REYNOLDS)

> (fact painter gainsborough)

(GAINSBOROUGH)

> (with-answer (painter 7x)
(print 7x))

GAINSBOROUGH

REYNOLDS

NIL

Conceptually, Prolog is the database program with the addition of rules, which
make it possible to satisfy a query not just by looking it up in the database, but by
inferring it from other known facts. For example, if we have arulelike:

If (hungry 7x) and (smells-of ?x turpentine)
Then (painter 7x)

thenthequery (painter ?7x) will besatisfied for 7x = raoul when the database
contains both (hungry raoul) and (smells-of raoul turpentine), even
if it doesn’t contain (painter raoul).

In Prolog, theif-part of aruleis called the body, and the then-part the head.
(Inlogic, the names are antecedent and consequent, but it is just as well to have
separate names, to emphasize that Prolog inference is not the same as logical
implication.) When trying to establish bindings? for a query, the program looks
first at the head of arule. If the head matchesthe query that the programistrying
to answer, the program will then try to establish bindingsfor the body of therule.
Bindings which satisfy the body will, by definition, satisfy the head.

Thefacts used in the body of the rule may in turn be inferred from other rules:

IMany of the concepts used in this chapter, including this sense of bindings, are explained in
Section 18.4.

24.2 AN INTERPRETER 323

If (gaunt ?7x) or (eats-ravenously ?7x)
Then (hungry 7x)

and rules may berecursive, asin:

If (surname ?f ?7n) and (father ?f ?c)
Then (surname ?c ?n)

Prolog will be able to establish bindings for a query if it can find some path
through the rules which leads eventually to known facts. So it is essentially a
search engine: it traverses the tree of logical implications formed by the rules,
looking for a successful path.

Though rules and facts sound like distinct types of objects, they are conceptu-
aly interchangeable. Rules can be seen as virtual facts. |If we want our database
to reflect the discovery that big, fierce animals are rare, we could look for all the
x such that there are facts (species X), (big X), and (fierce X), and add a
new fact (rare x). However, by defining aruleto say

If (species 7x) and (big 7x) and (fierce 7x)
Then (rare 7x)

we get the same effect, without actually having to add all the (rare x) to the
database. We can even define ruleswhich imply an infinite number of facts. Thus
rules make the database smaller at the expense of extraprocessing when it comes
time to answer questions.

Facts, meanwhile, are a degenerate case of rules. The effect of any fact F
could be duplicated by arule whose body was always true:

If true
Then F

To simplify our implementation, we will take advantage of this principle and
represent facts as bodylessrules.

24.2 AnlInterpreter

Section 18.4 showed two ways to define if-match. The first was simple but
inefficient. Its successor was faster because it did much of its work at compile-
time. We will follow a similar strategy here. In order to introduce some of the
topics involved, we will begin with asimple interpreter. Later we will show how
to write the same program much more efficiently.

324 PROLOG

(defmacro with-inference (query &body body)
‘ (progn
(setq *paths* nil)
(=bind (binds) (prove-query ’,(rep_ query) nil)
(let , (mapcar #’(lambda (v)
‘(,v (fullbind ’,v binds)))
(vars-in query #’atom))
,@body
(fail)))))

(defun rep_ (x)
(if (atom x)
(if (eq x ’_) (gensym "7") x)
(cons (rep_ (car x)) (rep_ (cdr x)))))

(defun fullbind (x b)
(cond ((varsym? x) (aif2 (binding x b)
(fullbind it b)
(gensym)))
((atom x) x)
(t (cons (fullbind (car x) b)
(fullbind (cdr x) b)))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\7)))

Figure 24.2: Toplevel macro.

Figures 24.2-24.4 contain the code for a simple Prolog interpreter. It ac-
cepts the same queries as the query interpreter of Section 19.3, but uses rules
instead of the database to generate bindings. The query interpreter was invoked
through a macro called with-answer. The interface to the Prolog interpreter
will be through a similar macro, called with-inference. Like with-answer,
with-inferenceisgivenaquery and a series of Lisp expressions. Variablesin
the query are symbols beginning with a question mark:

(with-inference (painter ?7x)
(print 7x))

A call towith-inference expandsinto code that will evaluate the Lisp expres-
sionsfor each set of bindings generated by the query. The call above, for example,

24.2 AN INTERPRETER 325

will print each x for which it is possibleto infer (painter x).

Figure 24.2 showsthe definition of with-inference, together with the func-
tion it calls to retrieve bindings. One notable difference between with-answer
and with-inference isthat the former simply collected all the valid bindings.
The new program searches nondeterministically. We see this in the definition of
with-inference: instead of expanding into aloop, it expands into code which
will return one set of bindings, followed by a fail to restart the search. This
gives usiteration implicitly, asin:

> (choose-bind x (01 234567 89)
(princ x)
(if (= x 6) x (fail)))

0123456

6

The function fullbind points to another difference between with-answer
andwith-inference. Tracingback throughaseriesof rulescanbuild up binding
lists in which the binding of avariableisalist of other variables. To make use of
the results of a query we now need a recursive function for retrieving bindings.
Thisisthe purpose of fullbind:

> (setq b ’((?x . (?7y . ?72)) (?y . foo) (?z . nil)))
((?X 7Y . ?2) (7Y . FOO) (7Z))

> (values (binding ’7x b))

(7Y . ?Z)

> (fullbind ’?x b)

(F00)

Bindingsfor thequery aregenerated by acall toprove-query intheexpansion
of with-inference. Figure 24.3 shows the definition of this function and the
functions it calls. This code is structurally isomorphic to the query interpreter
described in Section 19.3. Both programs use the same functions for matching,
but where the query interpreter used mapping or iteration, the Prolog interpreter
uses equivalent chooses.

Using nondeterministic search instead of iteration doesmaketheinterpretation
of negated queries a bit more complex. Given aquery like

(not (painter 7x))

the query interpreter could just try to establish bindings for (painter ?7x),
returning nil if any were found. With nondeterministic search we have to be
more careful: we don’'t want the interpretation of (painter 7x) to fail back
outside the scope of the not, nor do we want it to leave saved paths that might

326 PROLOG

(=defun prove-query (expr binds)
(case (car expr)
(and (prove-and (cdr expr) binds))
(or (prove-or (cdr expr) binds))
(not (prove-not (cadr expr) binds))
(t (prove-simple expr binds))))

(=defun prove-and (clauses binds)
(if (null clauses)
(=values binds)
(=bind (binds) (prove-query (car clauses) binds)
(prove-and (cdr clauses) binds))))

(=defun prove-or (clauses binds)
(choose-bind c clauses
(prove-query c binds)))

(=defun prove-not (expr binds)
(let ((save-paths #*pathsx*))
(setq *paths* nil)
(choose (=bind (b) (prove-query expr binds)
(setq *paths* save-paths)
(fail))
(progn
(setq *paths* save-paths)
(=values binds)))))

(=defun prove-simple (query binds)
(choose-bind r *rlist*

(implies r query binds)))

Figure 24.3: Interpretation of queries.

be restarted later. So now the test for (painter 7x) isdonewith atemporarily
empty list of saved states, and the old list is restored on the way out.

Another difference between this program and the query interpreter is in the
interpretation of simple patterns—expressionssuch as (painter ?x) whichcon-
sist just of apredicate and some arguments. When the query interpreter generated
bindingsfor asimple pattern, it called 1lookup (page 251). Now, instead of calling
lookup, we haveto get any bindingsimplied by the rules.

24.2 AN INTERPRETER 327

(defvar *rlist* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)
(car ant)
‘(and ,@ant))))
‘(length (conclf *rlist* (rep_ (coms ’,ant ’,con))))))

(=defun implies (r query binds)
(let ((r2 (change-vars r)))
(aif2 (match query (cdr r2) binds)
(prove-query (car r2) it)

(fail))))

(defun change-vars (r)
(sublis (mapcar #’(lambda (v)
(cons v (symb ’7 (gensym))))
(vars-in r #’atom))

r))

Figure 24.4: Code involving rules.

{rule) . (<- (sentence) (query))
(query) . (not (query))

: (and (query)*)

: (or (query)*)

: (sentence)
(sentence) : ((symbol) (argument)*)
(argument) : (variable)

: (symbol)

: (number)
(varigble) : ?(symbol)

Figure 24.5: Syntax of rules.

Code for defining and using rulesis shown in Figure 24.4. Therules are kept
inaglobal list, *r1ist*. Each ruleis represented as a dotted pair of body and
head. At thetime aruleis defined, all the underscores are replaced with unique
variables.

328 PROLOG

The definition of <- follows three conventions often used in programs of this
type:

1. New rules are added to the end rather than the front of the list, so that they
will be applied in the order that they were defined.

2. Rules are expressed head first, since that's the order in which the program
examines them.

3. Multiple expressionsin the body are within an implicit and.

The outermost call to 1ength in the expansion of <- issimply to avoid printing a
huge list when <~ is called from the toplevel.

Thesyntax of rulesisgivenin Figure24.5. Thehead of arulemust beapattern
for afact: alist of a predicate followed by zero or more arguments. The body
may be any query that could be handled by the query interpreter of Chapter 19.
Hereisthe rule from earlier in this chapter:

(<- (painter 7x) (and (hungry 7x)
(smells-of 7x turpentine)))

or just

(<- (painter 7x) (hungry ?7x)
(smells-of 7x turpentine))

Asin the query interpreter, argumentslike turpentine do not get evaluated, so
they don’t have to be quoted.

When prove-simple is asked to generate bindings for a query, it nondeter-
ministically chooses a rule and sends both rule and query to implies. Thelatter
function then tries to match the query with the head of the rule. If the match
succeeds, implies will cal prove-query to establish bindings for the body.
Thus we recursively search the tree of implications.

Thefunction change-vars replacesall thevariablesin arulewith fresh ones.
An 7x usedin oneruleis meant to be independent of one used in another. In order
to avoid conflicts with existing bindings, change-vars iscaled eachtime arule
isused.

For theconvenienceof theuser, it ispossibleto use _(underscore) asawildcard
variable in rules. When arule is defined, the function rep _is caled to change
each underscore into areal variable. Underscores can aso be used in the queries
giventowith-inference.

24.3 RULES 329

24.3 Rules

This section shows how to write rules for our Prolog. To start with, here are the
two rules from Section 24.1:

(<- (painter ?x) (hungry ?7x)
(smells-of 7x turpentine))

(<- (hungry ?x) (or (gaunt 7x) (eats-ravenously 7x)))

If we also assert the following facts:

(<~ (gaunt raoul))
(<~ (smells-of raoul turpentine))
(<~ (painter rubens))

Then we will get the bindings they generate according to the order in which they
were defined:

> (with-inference (painter 7x)
(print 7x))

RAOUL

RUBENS

Q

Thewith-inference macro hasexactly the samerestrictionsonvariablebinding
aswith-answer. (See Section 19.4.)

We can write rules which imply that facts of a given form are true for al
possible bindings. This happens, for example, when some variable occursin the
head of arule but not in the body. The rule

(<- (eats 7x 7f) (glutton 7x))

Saysthat if 7x isaglutton, then 7x eats everything. Because 7£ doesn’'t occur in
the body, we can prove any fact of theform (eats 7x y) simply by establishing
abinding for 7x. If we make a query with aliteral value as the second argument
to eats,

> (<- (glutton hubert))

7

> (with-inference (eats 7x spinach)
(print ?x))

HUBERT

@

then any literal value will work. When we give avariable asthe second argument:

330 PROLOG

> (with-inference (eats 7x 7y)
(print (list ?x ?y)))

(HUBERT #:G229)

Q

we get a gensym back. Returning a gensym as the binding of a variable in the
query isaway of signifying that any value would be true there. Programs can be
written explicitly to take advantage of this convention:

> (progn
(<- (eats monster bad-children))
(<- (eats warhol candy)))
9
> (with-inference (eats 7x 7y)
(format t ""A eats “A.7%"
X
(if (gensym? 7y) ’everything 7y)))
HUBERT eats EVERYTHING.
MONSTER eats BAD-CHILDREN.
WARHOL eats CANDY.
Q

Finally, if we want to specify that facts of a certain form will be true for any
arguments, we make the body a conjunction with no arguments. The expression
(and) will always behave as atrue fact. In the macro <- (Figure 24.4), the body
defaultsto (and), so for such rules we can simply omit the body:

> (<- (identical 7x ?x))

10

> (with-inference (identical a 7x)
(print 7x))

A

Q

For readerswith some knowledge of Prolog, Figure 24.6 showsthetrandation
from Prolog syntax into that of our program. The traditional first Prolog program
is append, which would be written as at the end of Figure 24.6. In an instance of
appending, two shorter lists are joined together to form a single larger one. Any
two of these lists define what the third should be. The Lisp function append takes
the two shorter lists as arguments and returns the longer one. Prolog append is
more general; the two rulesin Figure 24.6 define a program which, given any two
of thelistsinvolved, can find the third.

24.3 RULES 331

Our syntax differs from traditional Prolog syntax as follows:

1. Variables are represented by symbols beginning with question marks
instead of capital letters. Common Lisp is not case-sensitive by defaullt,
so it would be more trouble than it's worth to use capitals.

[] becomesnil.
Expressions of theform [x | y] become (x . V).

Expressionsof theform [x, y, ...] become(xy ...).

g > w D

Predicates are moved inside parentheses, and no commas separate argu-
ments. pred(x, y, ...) becomes (predxy ...).

Thus the Prolog definition of append:

append([1, Xs, Xs).
append([X | Xs], Ys, [X | Zs]) <- append(Xs, Ys, Zs).

becomes:

(<~ (append nil ?7xs 7xs))
(<- (append (7x . ?xs) 7ys (?x . 7zs))
(append 7xs ?ys 7zs))

Figure 24.6: Prolog syntax equivalence.

> (with-inference (append 7x (c d) (a b ¢ d))
(format t "Left: “AY" 7x))

Left: (A B)

Q

> (with-inference (append (a b) ?x (a b ¢ d))
(format t "Right: "A"%" 7x))

Right: (C D)

Q

> (with-inference (append (a b) (c d) ?x)
(format t "Whole: "A~Y%" 7x))

Whole: (A B C D)

Q

Not only that, but given only the last list, it can find al the possibilities for the
first two:

332 PROLOG

> (with-inference (append 7x 7y (a b c¢))
(format t "Left: “A Right: "A~%" ?x 7y))

Left: NIL Right: (A B C)

Left: (A) Right: (B C)

Left: (A B) Right: (C)

Left: (A B C) Right: NIL

Q

The case of append points to a great difference between Prolog and other
languages. A collection of Prolog rules does not have to yield a specific value. It
can instead yield constraints, which, when combined with constraints generated
by other parts of the program, yield a specific value. For example, if we define
member thus:

(<- (member ?x (7x . ?rest)))
(<= (member ?x (_ . 7rest)) (member ?x 7rest))

then we can use it to test for list membership, as we would use the Lisp function
member:

> (with-inference (member a (a b)) (print t))
T
Q

but we can also use it to establish a constraint of membership, which, combined
with other constraints, yields a specific list. If we also have apredicate cara

(<= (cara (a _.)))

whichistrueof any two-element list whosecar is a, then between that and member
we have enough constraint for Prolog to construct a definite answer:

> (with-inference (and (cara 71st) (member b 71st))
(print ?1st))

(A B)

Q

Thisisarather trivial example, but bigger programs can be constructed on the
same principle. Whenever we want to program by combining partial solutions,
Prolog may be useful. Indeed, a surprising variety of problems can be expressed
in such terms. Figure 24.14, for example, shows a sorting algorithm expressed as
a collection of constraints on the solution.

24.4 THE NEED FOR NONDETERMINISM 333

24.4 The Need for Nondeter minism

Chapter 22 explained the relation between deterministic and nondeterministic
search. A deterministic search program could take a query and generate al the
solutions which satisfied it. A nondeterministic search program will use choose
to generate solutions one at atime, and if more are needed, will call fail to restart
the search.

When we have ruleswhich all yield finite sets of bindings, and we want all of
them at once, thereis no reason to prefer nondeterministic search. The difference
between the two strategies becomes apparent when we have queries which would
generate an infinite number of bindings, of which we want a finite subset. For
example, therules

(<- (all-elements ?7x nil))
(<- (all-elements ?x (?x . 7rest))
(all-elements ?x 7rest))

imply al the facts of theform (all-elements X Yy), where every member of y
isequal to x. Without backtracking we could handle querieslike:

(all-elements a (a a a))
(all-elements a (a a b))
(all-elements ?x (a a a))

However, thequery (all-elements a 7x) issatisfied for aninfinite number of
possible 7x: nil, (a), (a a), and so on. If wetry to generate answers for this
query by iteration, theiteration will never terminate. Even if we only wanted one
of the answers, we would never get aresult from an implementation which had to
generate all the bindings for the query beforeit could begin to iterate through the
Lisp expressions following it.

Thisiswhy with-inference interleaves the generation of bindingswith the
evaluation of its body. Where queries could lead to an infinite number of answers,
the only successful approach will be to generate answersone at atime, and return
to pick up new ones by restarting the suspended search. Because it uses choose
and fail, our program can handle this case:

> (block nil
(with-inference (all-elements a 7x)
(if (= (length ?x) 3)
(return 7x)
(princ 7x))))
NIL(A) (A B
(A A D)

334 PROLOG

Like any other Prolog implementation, ours simulates nondeterminism by
doing depth-first search with backtracking. Intheory, “logic programs’ run under
true nondeterminism. In fact, Prolog implementations aways use depth-first
search. Far from being inconvenienced by this choice, typical Prolog programs
depend onit. In atruly nondeterministic world, the query

(and (all-elements a ?x) (length 7x 3))

has an answer, but it takes you arbitrarily long to find out what it is.

Not only does Prolog use the depth-first implementation of nondeterminism,
it uses a version equivalent to that defined on page 293. As explained there, this
implementation is not always guaranteed to terminate. So Prolog programmers
must take deliberate steps to avoid loops in the search space. For example, if we
had defined member in the reverse order

(<- (member ?x (_ . 7rest)) (member 7x ?rest))
(<- (member 7x (?x . 7rest)))

then logically it would have the same meaning, but as a Prolog program it would
have a different effect. The original definition of member would yield an infinite
stream of answers in response to the query (member ’a 7x), but the reversed
definition will yield an infinite recursion, and no answers.

245 New Implementation

In this section we will see another instance of afamiliar pattern. In Section 18.4,
we found after writing the initial version that if-match could be made much
faster. By taking advantage of information known at compile-time, we were
able to write a new version which did less work at runtime. We saw the same
phenomenon on alarger scale in Chapter 19. Our query interpreter was replaced
by an equivalent but faster version. The same thing is about to happen to our
Prolog interpreter.

Figures 24.7, 24.8, and 24.10 define Prolog in a different way. The macro
with-inference used to be just the interface to a Prolog interpreter. Now it is
most of the program. The new program has the same general shape asthe old one,
but of the functions defined in Figure 24.8, only prove iscaled at runtime. The
othersarecalled by with-inference in order to generate its expansion.

Figure 24.7 shows the new definition of with-inference. ASin if-match
or with-answer, pattern variables are initially bound to gensyms to indicate
that they haven't yet been assigned real values by matching. Thus the function
varsym?, Whichmatch and fullbind use to detect variables, has to be changed
to look for gensyms.

24.5 NEW IMPLEMENTATION 335

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
¢ (with-gensyms ,vars
(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query))
(let , (mapcar #’(lambda (v)
“(,v (fullbind ,v ,gb)))
vars)
,@body)
(fail)))))

(defun varsym? (x)
(and (symbolp x) (not (symbol-package x))))

Figure 24.7: New toplevel macro.

To generate the code to establish bindings for the query, with-inference
cals gen-query (Figure 24.8). The first thing gen-query does is look to see
whether itsfirst argument is a complex query beginning with an operator like and
or or. This process continues recursively until it reaches smple queries, which
are expanded into calls to prove. In the original implementation, such logical
structure was analyzed at runtime. A complex expression occurring in the body
of arule had to be analyzed anew each time the rule was used. Thisis wasteful
because the logical structure of rules and queries is known beforehand. The new
implementation decomposes complex expressions at compile-time.

As in the previous implementation, awith-inference expression expands
into codewhichiteratesthrough the Lisp code following the query with the pattern
variables bound to successive values established by the rules. The expansion of
with-inference concludeswith afail, which will restart any saved states.

The remaining functions in Figure 24.8 generate expansions for complex
gueries—aqueries joined together by operatorslike and, or, and not. If we have
aquery like

(and (big 7x) (red 7x))

then we want the Lisp code to be evaluated only with those ?x for which both
conjuncts can be proved. So to generate the expansion of an and, we nest
the expansion of the second conjunct within that of the first. When (big 7x)
succeedswetry (red 7x),andif that succeeds, we evaluatethe Lisp expressions.
So the whole expression expands asin Figure 24.9.

336 PROLOG

(defun gen-query (expr &optional binds)
(case (car expr)
(and (gen-and (cdr expr) binds))
(or (gen-or (cdr expr) binds))
(not (gen-not (cadr expr) binds))

(t ‘(prove (list ’,(car expr)
,@(mapcar #’form (cdr expr)))
,binds))))

(defun gen-and (clauses binds)
(if (null clauses)
‘(=values ,binds)
(let ((gb (gensym)))
“(=bind (,gb) ,(gen-query (car clauses) binds)
, (gen-and (cdr clauses) gb)))))

(defun gen-or (clauses binds)
‘(choose
,@(mapcar #’(lambda (c) (gen-query c binds))
clauses)))

(defun gen-not (expr binds)
(let ((gpaths (gensym)))
‘(let ((,gpaths *pathsx*))
(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds)
(setq *paths* ,gpaths)
(fail))
(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(=defun prove (query binds)
(choose-bind r #*rules* (=funcall r query binds)))

(defun form (pat)
(if (simple? pat)
pat
“(cons ,(form (car pat)) ,(form (cdr pat)))))

Figure 24.8: Compilation of queries.

24.6 ADDING PROLOG FEATURES 337

(with-inference (and (big 7x) (red 7x))
(print 7x))

expandsinto:

(with-gensyms (7x)
(setq *paths* nil)
(=bind (#:g1) (=bind (#:g2) (prove (list ’big 7x) nil)
(=bind (#:g3) (prove (list ’red 7x) #:g2)
(=values #:g3)))
(let ((?x (fullbind ?7x #:g1)))
(print 7x))
(fail)))

Figure 24.9: Expansion of a conjunction.

An and means nesting; an or means a choose. Given aquery like
(or (big 7x) (red 7x))

wewant the Lisp expressionsto be eval uated for values of 7x established by either
subquery. The function gen-or expands into a choose over the gen-query of
each of the arguments. Asfor not, gen-not is almost identical to prove-not
(Figure 24.3).

Figure 24.10 shows the code for defining rules. Rules are translated directly
into Lisp code generated by rule-fn. Since <- now expandsrulesinto Lisp code,
compiling afile full of rule definitions will cause rulesto be compiled functions.

When a rule-function is sent a pattern, it tries to match it with the head of
the rule it represents. |f the match succeeds, the rule-function will then try to
establish bindings for the body. Thistask is essentially the same as that done by
with-inference, and in fact rule-fn ends by caling gen-query. The rule-
function eventually returns the bindings established for the variables occurringin
the head of therule.

24.6 Adding Prolog Features

The code already presented can run most “pure” Prolog programs. The final step
isto add extras like cuts, arithmetic, and I/0.

Putting a cut in a Prolog rule causes the search tree to be pruned. Ordinarily,
when our program encountersa fail, it backtracksto the last choice point. The

338 PROLOG

(defvar *rules* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)
(car ant)
‘(and ,@ant))))
‘(length (conclf *rules*
, (rule-fn (rep_ ant) (rep_ con))))))

(defun rule-fn (ant con)
(with-gensyms (val win fact binds)
‘(=lambda (,fact ,binds)
(with-gensyms , (vars-in (list ant con) #’simple?)
(multiple-value-bind
(,val ,win)
(match ,fact
(list ’, (car con)
,@(mapcar #’form (cdr con)))
,binds)
(if ,win
, (gen-query ant val)

(fail)))))))

Figure 24.10: Code for defining rules.

implementation of choosein Section 22.4 stores choice pointsintheglobal variable
xpaths*. Calling fail restartsthe search at the most recent choice point, which
is the car of *paths*. Cuts introduce a new complication. When the program
encountersa cut, it will throw away some of the most recent choice points stored

on *paths*—specificaly, all those stored since thelast call to prove.

The effect is to make rules mutually exclusive. We can use cuts to get the
effect of acase statement in Prolog programs. For example, if we defineminimum

this way:

(<= (minimum ?7x 7y 7x) (lisp (<= 7x 7y)))
(<~ (minimum ?x 7y ?y) (lisp (> ?x ?y)))

it will work correctly, but inefficiently. Given the query

(minimum 1 2 ?7x)

24.6 ADDING PROLOG FEATURES 339

Prolog will immediately establish that 7x = 1 from thefirst rule. A human would
stop here, but the program will waste time looking for more answers from the
second rule, becauseit has been given no indication that thetwo rulesare mutually
exclusive. On the average, this version of minimum will do 50% more work than
it needsto. We can fix the problem by adding a cut after the first test:

(<= (minimum ?7x ?y ?x) (lisp (<= 7x ?7y)) (cut))
(<= (minimum ?x ?y ?y))

Now when Prolog has finished with the first rule, it will fail all the way out of the
query instead of moving on to the next rule.

It is trivialy easy to modify our program to handle cuts. On each cal to
prove, the current state of *paths* is passed as a parameter. |f the program
encountersacut, it just sets*paths* back to the old value passed inthe parameter.
Figures 24.11 and 24.12 show the code which has to be modified to handle cuts.
(Changed lines are marked with semicolons. Not all the changes are due to cuts.)

Cuts which merely make a program more efficient are called green cuts. The
cut in minimum was a green cut. Cuts which make a program behave differently
are called red cuts. For example, if we define the predicate artist asfollows:

(<- (artist ?7x) (sculptor 7x) (cut))
(<- (artist 7x) (painter 7x))

theresult isthat, if there are any sculptors, then the query can end there. If there
are no sculptors then painters get to be considered as artists:

> (progn (<- (painter ’klee))
(<- (painter ’soutine)))
4
> (with-inference (artist 7x)
(print 7x))
KLEE
SOUTINE
Q

But if there are sculptors, the cut stops inference with thefirst rule:

> (<- (sculptor ’hepworth))

5

> (with-inference (artist 7x)
(print 7x))

HEPWORTH

@

340 PROLOG

(defun rule-fn (ant con)
(with-gensyms (val win fact binds paths)
‘(=lambda (,fact ,binds ,paths)
(with-gensyms , (vars-in (list ant con) #’simple?)
(multiple-value-bind
(,val ,win)
(match ,fact
(1ist ’,(car con)
,@(mapcar #’form (cdr con)))
,binds)
(if ,win
, (gen-query ant val paths)
(fail)))))))

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars
(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query) nil ’#*paths*)
(let , (mapcar #’(lambda (v)
“(,v (fullbind ,v ,gb)))
vars)
,@body)
(fail)))))

(defun gen-query (expr binds paths)
(case (car expr)
(and (gen-and (cdr expr) binds paths))
(or (gen-or (cdr expr) binds paths))
(not (gen-not (cadr expr) binds paths))
(1isp (gen-lisp (cadr expr) binds))
(is (gen-is (cadr expr) (third expr) binds))
(cut ‘(progn (setq *paths* ,paths)
(=values ,binds)))
(t ‘(prove (list ’,(car expr)
,@(mapcar #’form (cdr expr)))
,binds *paths*))))

(=defun prove (query binds paths)
(choose-bind r *rules*

(=funcall r query binds paths)))

Figure 24.11: Adding support for new operators.

H

24.6 ADDING PROLOG FEATURES 341

(defun gen-and (clauses binds paths)
(if (null clauses)
‘(=values ,binds)
(let ((gb (gensym)))
‘(=bind (,gb) ,(gen—-query (car clauses) binds paths);
, (gen-and (cdr clauses) gb paths))))) ;
(defun gen-or (clauses binds paths)
‘(choose
,@(mapcar #’(lambda (c) (gen-query c binds paths))
clauses)))

(defun gen-not (expr binds paths)
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)

(choose (=bind (b) , (gen-query expr binds paths)
(setq *paths* ,gpaths)
(fail))

(progn

(setq *paths* ,gpaths)
(=values ,binds))))))

H

(defmacro with-binds (binds expr)
‘(let ,(mapcar #’(lambda (v) ‘(,v (fullbind ,v ,binds)))
(vars-in expr))
,eXpr))

(defun gen-lisp (expr binds)
¢(if (with-binds ,binds ,expr)
(=values ,binds)
(fail)))

(defun gen-is (exprl expr2 binds)
‘(aif2 (match ,exprl (with-binds ,binds ,expr2) ,binds)
(=values it)
(fail)))

Figure 24.12: Adding support for new operators.

342 PROLOG

{rule) : (<- (sentence) (query))
(query) : (not (query))
: (and (query)*)
 (Lisp (lisp expression))
: (is (variable) (lisp expression))
: (cut)
: (fail)
. (sentence)
(sentence) : ((symbol) (argument)*)
(argument) : (variable)
. (lisp expression)
(varigble) : ?(symbol)

Figure 24.13: New syntax of rules.

The cut is sometimes used in conjunction with the Prolog fail operator. Our
function fail does exactly the same thing. Putting a cut in arule makesit like a
one-way street: once you enter, you're committed to using only that rule. Putting
a cut-fail combination in a rule makes it like a one-way street in a dangerous
neighborhood: once you enter, you're committed to leaving with nothing. A
typical exampleisin the implementation of not-equal:

(<~ (not-equal ?x ?x) (cut) (fail))
(<- (not-equal ?x ?7y))

The first rule here is atrap for impostors. If we're trying to prove a fact of the
form (not-equal 1 1), it will match with the head of the first rule and thus be
doomed. The query (not-equal 1 2), on the other hand, will not match the
head of the first rule, and will go on to the second, where it succeeds:

> (with-inference (not-equal ’a ’a)

(print t))

Q

> (with-inference (not-equal ’(a a) ’(a b))
(print t))

T

Q

The code shownin Figures24.11 and 24.12 al so gives our program arithmetic,
I/0, and the Prolog is operator. Figure 24.13 shows the complete syntax of rules
and queries.

24.6 ADDING PROLOG FEATURES 343

We add arithmetic (and more) by including atrapdoor to Lisp. Now inaddition
to operators like and and or, we have the 1isp operator. This may be followed
by any Lisp expression, which will be evaluated with the variableswithin it bound
to the bindings established for them by the query. If the expression evaluates to
nil, thenthelisp expression asawholeisequivalenttoa (fail); otherwiseit
isequivalentto (and).

Asan example of the use of the 1isp operator, consider the Prolog definition
of ordered, whichistrueof listswhoseelementsare arranged in ascending order:

(<~ (ordered (?x)))

(<- (ordered (7x 7y . 7ys))
(lisp (<= 7x ?7y))
(ordered (?7y . ?7ys)))

In English, alist of one element is ordered, and alist of two or more elementsis
ordered if the first element of the list is less than or equal to the second, and the
list from the second element onis ordered.

> (with-inference (ordered ’(1 2 3))

(print t))

T

Q

> (with-inference (ordered ’(1 3 2))
(print t))

Q

By means of the 1isp operator we can provide other features offered by
typical Prologimplementations. Prolog1/o predicates can be duplicated by putting
Lisp I/o calls within 1isp expressions. The Prolog assert, which as a side-
effect defines new rules, can be duplicated by calling the <- macro within 1isp
expressions.

The is operator offersaform of assignment. It takes two arguments, a pattern
and aLisp expression, and tries to match the pattern with the result returned by the
expression. If the match fails, then the program calls fail; otherwiseit proceeds
with the new bindings. Thus, the expression (is ?x 1) hasthe effect of setting
7x to 1, or more precisaly, insisting that 7x be 1. We need is to calculate—for
example, to calculate factorials:

(<= (factorial 0 1))
(<= (factorial ?n ?7f)
(1isp (> 7n 0))
(is ?n1 (- 7n 1))
(factorial 7n1 ?7f1)
(is ?f (x 7n ?£f1)))

344 PROLOG

We use this definition by making a query with a number n as the first argument
and avariable as the second:

> (with-inference (factorial 8 7x)
(print 7x))

40320

Q

Note that the variables used in a 1isp expression, or in the second argument to
is, must have established bindings for the expression to return a value. This
restriction holds in any Prolog. For example, the query:

(with-inference (factorial ?7x 120) ; wrong
(print 7x))

won't work with this definition of factorial, because 7n will be unknown when
the 1isp expression is evaluated. So not al Prolog programs are like append:
many insist, like factorial, that certain of their arguments be real values.

24.7 Examples

Thisfina section shows how to write some example Prolog programsin our
implementation. The rules in Figure 24.14 define quicksort. These rules imply
facts of the form (quicksort X y), wherexisalistandyisalist of the same
elements sorted in ascending order. Variables may appear in the second argument
position:

> (with-inference (quicksort ’(3 2 1) ?7x)
(print 7x))

(123)

Q

Ani/oloopisatest for our Prolog, becauseit makesuse of the cut, 1isp, and
is operators. The codeis shown in Figure 24.15. These rules should be invoked
by trying to prove (echo), with no arguments. That query will match the first
rule, which will bind ?x to the result returned by read, and then try to establish
(echo 7x). The new query can match either of the second two rules. If 7x =
done, then the query will terminate in the second rule. Otherwise the query will
only match the third rule, which prints the value read, and starts the process over

again.

24.7

EXAMPLES

345

(setq *rulesx* nil)

(<- (append nil ?7ys 7ys))

(<- (append (?x . ?xs) 7ys (7x . 7zs))
(append 7xs 7ys 7zs))

(<- (quicksort (?x . ?xs) 7ys)
(partition 7xs ?x 7littles 7bigs)
(quicksort 7littles 71s)

(quicksort ?bigs 7bs)
(append 71s (?x . 7bs) 7ys))

(<~ (quicksort nil nil))

(<- (partition (?x . 7xs) 7y (?x . 71ls) 7bs)
(lisp (<= 7x ?7y))

(partition ?xs 7y 7ls 7bs))

(<- (partition (?7x . ?xs) 7y 7ls (?x . 7bs))
(lisp (> ?7x 7y))

(partition 7xs 7y 7ls 7bs))

(<- (partition nil 7y nil nil))

Figure 24.14: Quicksort.

(<~ (echo)

(is ?x (read))
(echo 7x))

(<= (echo ’done)
(cut))

(<~ (echo 7x)

(lisp (progl t (format t "“A"%" ?7x)))
(is 7y (read))

(cut)

(echo ?7y))

Figure 24.15: Ani/oloop in Prolog.

346 PROLOG

Collectively, the rules define a program that will continue to echo what you
type, until you type done:

> (with-inference (echo))
hi

HI

ho

HO

done

Q

Programs like this are difficult to read because they subvert the abstract model of
Prolog. It might beeasier to understandecho if welook at aliteral Lisptrandation

(defun echo (&rest args)
(cond ((null args) (echo (read)))
((eq (car args) ’done) nil)
(t (format t ""A~Y%" (car args))
(echo (read)))))

which in idiomatic Common Lisp would be:

(defun echo (&optional (arg (read)))
(unless (eq arg ’done)
(format t "“A7Y" arg)
(echo)))

24.8 The Senses of Compile

The word “compile” has severa senses. In the most general sense, to compileis
to transform some abstract description of a program into lower-level code. The
program described in this chapter is certainly a compiler in this sense, because it
trandates rulesinto Lisp functions.

In a more specific sense, to compile is to transform a program into machine
language. Good Common Lisps compile functions into native machine code. As
mentioned on page 25, if code which generates closures is compiled, it will yield
compiled closures. Thus the program described here is a compiler in the stricter
senseaswell. Inagood Lisp, our Prolog programswill get translated into machine
language.

However, the program described here is still not a Prolog compiler. For
programming languages there is a still more specific sense of “compile,” and
merely generating machinecodeisnot enoughto satisfy thisdefinition. A compiler
for aprogramming language must optimize as well astranslate. For example, if a
Lisp compiler is asked to compile an expression like

24.8 THE SENSES OF COMPILE 347

(+ x (+ 2 5))

it should be smart enough to realize that there is no reason to wait until runtime
to evaluate (+ 2 5). The program can be optimized by replacing it with 7, and
instead compiling

+x7

In our program, all the compiling is done by the Lisp compiler, and it is
looking for Lisp optimizations, not Prolog optimizations. Its optimizations will
be valid ones, but too low-level. The Lisp compiler doesn’'t know that the code
it's compiling is meant to represent rules. While areal Prolog compiler would be
looking for rulesthat could be transformed into loops, our programislooking for
expressions that yield constants, or closures that could be allocated on the stack.

Embedded languages allow you to make the most of available abstractions,
but they are not magic. If you want to travel all the way from a very abstract
representation to fast machine code, someone still hasto tell the computer how to
doit. Inthis chapter we travelled a good part of that distance with surprisingly
little code, but that is not the same as writing a true Prolog compiler.

25

Object-Oriented Lisp

This chapter discusses object-oriented programming in Lisp. Common Lisp
includes a set of operatorsfor writing object-oriented programs. Collectively they
are called the Common Lisp Object System, or cLOS. Here we consider CLOS not
just as away of writing object-oriented programs, but as a Lisp program itself.
Seeing cLos in thislight isthe key to understanding the relation between Lisp and
object-oriented programming.

25.1 Plusc¢a Change

Object-oriented programming means achangein theway programsare organized.
This change is analogous to the one that has taken place in the distribution of
processor power. In 1970, a multi-user computer system meant one or two hig
mainframes connected to alarge number of dumb terminals. Now itismorelikely
to mean alarge number of workstations connected to one another by a network.
The processing power of the system is now distributed among individual users
instead of centralized in one big computer.

Object-oriented programming breaks up traditional programs in much the
same way: instead of having a single program which operates on an inert mass
of data, the data itself is told how to behave, and the program is implicit in the
interactions of these new data “ objects.”

For example, suppose we want to write a program to find the areas of two-
dimensional shapes. Oneway to do thiswould beto write asingle function which
looked at the type of its argument and behaved accordingly:

348

25.2 OBJECTSIN PLAIN LISP 349

(defun area (x)
(cond ((rectangle-p x) (* (height x) (width x)))
((circle-p x) (* pi (expt (radius x) 2)))))

The object-oriented approach is to make each object ableto calculateits own area.
The area function is broken apart and each clause distributed to the appropriate
class of object; the area method of the rectangle class might be

#’ (lambda (x) (* (height x) (width x)))
and for the circle class,
#’ (lambda (x) (* pi (expt (radius x) 2)))

In this model, we ask an object what its areais, and it responds according to the
method provided for its class.

The arrival of cLoS might seem a sign that Lisp is changing to embrace the
object-oriented paradigm. Actually, it would be more accurate to say that Lisp
is staying the same to embrace the object-oriented paradigm. But the principles
underlying Lisp don’t have a name, and object-oriented programming does, so
there is atendency now to describe Lisp as an object-oriented language. It would
be closer to thetruth to say that Lisp is an extensiblelanguage in which constructs
for object-oriented programming can easily be written.

Since CLOS comes pre-written, it is not false advertising to describe Lisp as
an object-oriented language. However, it would be limiting to see Lisp as merely
that. Lisp is an object-oriented language, yes, but not because it has adopted
the object-oriented model. Rather, that model turns out to be just one more
permutation of the abstractions underlying Lisp. And to proveit we have CLOS, a
program written in Lisp, which makes Lisp an object-oriented language.

The aim of this chapter is to bring out the connection between Lisp and
object-oriented programming by studying CLOS as an example of an embedded
language. Thisis aso agood way to understand cLos itself: in the end, nothing
explains alanguage feature more effectively than a sketch of its implementation.
In Section 7.6, macros were explained this way. The next section givesa similar
sketch of how to build object-oriented abstractions on top of Lisp. This program
provides a reference point from which to describe cLOS in Sections 25.3-25.6.

25.2 Objectsin Plain Lisp

We can mold Lisp into many different kinds of languages. Thereis aparticularly
direct mapping between the concepts of object-oriented programming and the
fundamental abstractions of Lisp. The size of cLOS tends to obscure thisfact. So

350 OBJECT-ORIENTED LISP

before looking at what we can do with cLOS, let's see what we can do with plain
Lisp.

Much of what we want from object-oriented programming, we have aready
in Lisp. We can get the rest with surprisingly little code. In this section, we will
define an object system sufficient for many real applicationsin two pages of code.
Object-oriented programming, at a minimum, implies

1. objectswhich have properties

2. and respond to messages,

3. and which inherit properties and methods from their parents.

In Lisp, there are already several ways to store collections of properties.
One way would be to represent objects as hash-tables, and store their properties
as entries within them. We then have access to individual properties through
gethash:

(gethash ’color obj)

Since functions are data objects, we can store them as propertiestoo. This means
that we can a so have methods; to invoke a given method of an object isto funcall
the property of that name:

(funcall (gethash ’move obj) obj 10)
We can define a Smalltalk style message-passing syntax upon this idea:

(defun tell (obj message &rest args)
(apply (gethash message obj) obj args))

so that to tell obj to move 10 we can say
(tell obj ’move 10)

Infact, the only ingredient plain Lisp lacksisinheritance, and we can provide
arudimentary version of that in six lines of code, by defining a recursive version
of gethash:

(defun rget (obj prop)
(multiple-value-bind (val win) (gethash prop obj)
(if win
(values val win)
(let ((par (gethash ’parent obj)))
(and par (rget par prop))))))

25.2 OBJECTSIN PLAIN LISP 351

(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))
(get-ancestors obj)))

(defun get-ancestors (obj)
(labels ((getall (x)
(append (list x)
(mapcan #’getall
(gethash ’parents x)))))
(stable-sort (delete-duplicates (getall obj))
#’ (lambda (x y)
(member y (gethash ’parents x))))))

(defun some2 (fn 1lst)
(if (atom 1st)
nil
(multiple-value-bind (val win) (funcall fn (car 1lst))
(if (or val win)
(values val win)
(some2 fn (cdr 1st))))))

Figure 25.1: Multiple inheritance.

If we just use rget in place of gethash, we will get inherited properties and
methods. We specify an object’s parent thus:

(setf (gethash ’parent obj) obj2)

So far we have only single inheritance—an object can only have one parent.
But we can have multiple inheritance by making the parent property alist, and
defining rget asin Figure 25.1.

With single inheritance, when we wanted to retrieve some property of an
object, we just searched recursively up its ancestors. If the object itself had no
information about the property we wanted, we looked at its parent, and so on.
With multipleinheritance we want to perform the same kind of search, but our job
is complicated by the fact that an object’s ancestors can form a graph instead of a
simple list. We can’t just search this graph depth-first. With multiple parents we
can have the hierarchy shownin Figure 25.2; a is descended from b and c, which
are both descended from d. A depth-first (or rather, height-first) traversal would
go a, b, d, c, d. If the desired property were present in both d and ¢, we would

352 OBJECT-ORIENTED LISP

Figure 25.2: Multiple paths to a superclass.

get the value stored in 4, not the one stored in c. Thiswould violate the principle
that subclasses override the default values provided by their parents.

If wewant toimplement theusual ideaof inheritance, we should never examine
an object before one of its descendants. In thiscase, the proper search order would
be a, b, ¢, d. How can we ensure that the search always tries descendants first?
The simplest way is to assemble a list of all the ancestors of the original object,
sort the list so that no object appears before one of its descendants, and then look
at each element in turn.

Thisstrategy isused by get-ancestors,whichreturnsaproperly ordered list
of anobject anditsancestors. Tosortthelist, get-ancestors callsstable-sort
instead of sort, to avoid the possibility of reordering parallel ancestors. Oncethe
list is sorted, rget merely searches for the first object with the desired property.
(The utility some?2 is aversion of some for use with functions like gethash that
indicate success or failure in the second return value.)

The list of an object’s ancestors goes from most specific to least specific: if
orange is a child of citrus, which is a child of fruit, then the list will go
(orange citrus fruit).

When an object has multiple parents, their precedence goes | eft-to-right. That
is, if we say

(setf (gethash ’parents x) (list y z))

then y will be considered before z when we look for an inherited property. For
example, we can say that a patriotic scoundrel is a scoundrel first and a patriot
second:

> (setq scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table))
#<Hash-Table C4219E>

25.2 OBJECTSIN PLAIN LISP 353

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (gethash ’parents obj) parents)
(ancestors obj)
obj))

(defun ancestors (obj)
(or (gethash ’ancestors obj)
(setf (gethash ’ancestors obj) (get-ancestors obj))))

(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))
(ancestors obj)))

Figure 25.3: A function to create objects.

> (setf (gethash ’serves scoundrel) ’self
(gethash ’serves patriot) ’country
(gethash ’parents patriotic-scoundrel)

(1ist scoundrel patriot))

(#<Hash-Table C41C7E> #<Hash-Table C41FOE>)

> (rget patriotic-scoundrel ’serves)

SELF

T

Let’'s make someimprovementsto this skeletal system. We could beginwith a
functionto create objects. Thisfunction should build alist of an object’sancestors
at the time the object is created. The current code builds these lists when queries
are made, but there is no reason not to do it earlier. Figure 25.3 definesafunction
called obj which crestes a new object, storing within it alist of its ancestors. To
take advantage of stored ancestors, we aso redefine rget.

Another place for improvement isthe syntax of messagecalls. Thetell itself
is unnecessary clutter, and because it makes verbs come second, it means that our
programs can no longer be read like normal Lisp prefix expressions:

(tell (tell obj ’find-owner) ’find-owner)

Wecanget rid of thetel1 syntax by defining each property nameasafunction,
asin Figure 25.4. The optional argumentmeth?, if true, signalsthat this property
should be treated as amethod. Otherwiseit will be treated as a slot, and the value
retrieved by rget will simply be returned. Once we have defined the name of
either kind of property,

354 OBJECT-ORIENTED LISP

(defmacro defprop (name &optional meth?)

‘ (progn
(defun ,name (obj &rest args)
, (if meth?

¢ (run-methods obj ’,name args)
‘(rget obj ’,name)))
(defsetf ,name (obj) (val)
‘(setf (gethash ’,’,name ,obj) ,val))))

(defun run-methods (obj name args)
(let ((meth (rget obj name)))
(if meth
(apply meth obj args)
(error "No ~A method for "A." name obj))))

Figure 25.4: Functional syntax.

(defprop find-owner t)

we can refer to it with afunction call, and our code will read like Lisp again:
(find-owner (find-owner obj))

Our previous example now becomes somewhat more readable;

> (progn
(setq scoundrel (obj))
(setq patriot (obj))
(setq patriotic-scoundrel (obj scoundrel patriot))
(defprop serves)
(setf (serves scoundrel) ’self)
(setf (serves patriot) ’country)
(serves patriotic-scoundrel))
SELF

In the current implementation, an object can have at most one method of a
given name. An object either has its own method, or inherits one. It would be
convenient to have more flexibility on this point, so that we could combine local
and inherited methods. For example, we might want the move method of some
object to be the move method of its parent, but with some extra code run before

or afterwards.

25.2 OBJECTSIN PLAIN LISP 355

Toallow for such possihilities, we will modify our programto include before-,
after-, and around-methods. Before-methods allow us to say “But first, do this.”
They are called, most specific first, as a prelude to the rest of the method call.
After-methods allow usto say “PS. Do thistoo.” They are called, most specific
last, as an epilogue to the method call. Between them, we run what used to be the
whole method, and is now called the primary method. The value of thiscall isthe
onereturned, even if after-methods are called later.

Before- and after-methods allow us to wrap new behavior around the call to
the primary method. Around-methods provide a more drastic way of doing the
same thing. If an around-method exists, it will be called instead of the primary
method. Then, at its own discretion, the around-method may itself invoke the
primary method (via call-next, which will be provided in Figure 25.7).

To allow auxiliary methods, we modify run-methods and rget as in Fig-
ures 25.5 and 25.6. In the previous version, when we ran some method of an
object, we ran just one function: the most specific primary method. We ran the
first method we encountered when searching the list of ancestors. With auxiliary
methods, the calling sequence now goes as follows:

1. The most specific around-method, if thereis one.

2. Otherwise, in order:

(&) All before-methods, from most specific to least specific.
(b) The most specific primary method (what we used to call).
(c) All after-methods, from least specific to most specific.

Notice also that instead of being a single function, a method becomes a four-
part structure. To define a (primary) method, instead of saying:

(setf (gethash ’move obj) #’(lambda ...))

we say:
(setf (meth-primary (gethash ’move obj)) #’(lambda ...))

For this and other reasons, our next step should be to define a macro for defining
methods.

Figure 25.7 shows the definition of such a macro. The bulk of this code is
taken up with implementing two functions that methods can use to refer to other
methods. Around- and primary methods can use call-next to invoke the next
method, which is the code that would have run if the current method didn’t exist.
For example, if the currently running method is the only around-method, the next

356 OBJECT-ORIENTED LISP

(defstruct meth around before primary after)

(defmacro meth- (field obj)
(let ((gobj (gensym)))
‘(let ((,gobj ,0bj))
(and (meth-p ,gobj)
(, (symb ’meth- field) ,gobj)))))

(defun run-methods (obj name args)
(let ((pri (rget obj name :primary)))

(if pri
(let ((ar (rget obj name :around)))
(if ar

(apply ar obj args)
(run-core-methods obj name args pri)))
(error "No primary ~A method for ~“A." name obj))))

(defun run-core-methods (obj name args &optional pri)
(multiple-value-progl
(progn (run-befores obj name args)
(apply (or pri (rget obj name :primary))
obj args))
(run-afters obj name args)))

(defun rget (obj prop &optional meth (skip 0))
(some2 #’ (lambda (a)

(multiple-value-bind (val win) (gethash prop a)
(if win
(case meth (:around (meth- around val))
(:primary (meth- primary val))
(t (values val win))))))
(nthcdr skip (ancestors obj))))

Figure 25.5: Auxiliary methods.

method would be the usual sandwich of before-, most specific primary, and after-
methods. Withinthe most specific primary method, the next method would be the
second most specific primary method. Since the behavior of call-next depends
on where it is called, it is never defined globally with a defun, but is defined
locally within each method defined by defmeth.

25.2 OBJECTSIN PLAIN LISP 357

(defun run-befores (obj prop args)
(dolist (a (ancestors obj))
(let ((bm (meth- before (gethash prop a))))
(if bm (apply bm obj args)))))

(defun run-afters (obj prop args)
(labels ((rec (1st)
(when 1lst
(rec (cdr 1lst))
(let ((am (meth- after
(gethash prop (car 1st)))))
(if am (apply am (car 1lst) args))))))
(rec (ancestors obj))))

Figure 25.6: Auxiliary methods (continued).

An around- or primary method can use next-p to check whether there is a
next method. If the current method is the primary method of an object with no
parents, for example, there would be no next method. Since call-next yields
an error when there is no next method, next-p should usualy be called to test
the waters first. Like call-next, next-p is defined locally within individual
methods.

Thenew macrodefmethisused asfollows. If wejust want to definethearea
method of the rectangle object, we say

(setq rectangle (obj))

(defprop height)

(defprop width)

(defmeth (area) rectangle (r)
(* (height r) (width r)))

Now the area of an instance s calculated according to the method of the class:

> (let ((myrec (obj rectangle)))
(setf (height myrec) 2
(width myrec) 3)
(area myrec))

358 OBJECT-ORIENTED LISP

(defmacro defmeth ((name &optional (type :primary))
obj parms &body body)
(let ((gobj (gensym)))
‘(let ((,gobj ,0bj))
(defprop ,name t)
(unless (meth-p (gethash ’,name ,gobj))
(setf (gethash ’,name ,gobj) (make-meth)))
(setf (,(symb ’meth- type) (gethash ’,name ,gobj))
, (build-meth name type gobj parms body)))))

(defun build-meth (name type gobj parms body)
(let ((gargs (gensym)))
‘#’ (lambda (&rest ,gargs)
(labels
((call-next ()
,(i1f (or (eq type :primary)
(eq type :around))
‘(cnm ,gobj ’,name (cdr ,gargs) ,type)
>(error "Illegal call-next.")))
(next-p O
, (case type
(:around
‘(or (rget ,gobj ’,name :around 1)
(rget ,gobj ’,name :primary)))
(:primary
‘(rget ,gobj ’,name :primary 1))
(t nil))))
(apply #’(lambda ,parms ,@body) ,gargs)))))

(defun cnm (obj name args type)
(case type
(:around (let ((ar (rget obj name :around 1)))
(if ar
(apply ar obj args)
(run-core-methods obj name args))))
(:primary (let ((pri (rget obj name :primary 1)))
(if pri
(apply pri obj args)
(error "No next method."))))))

Figure 25.7: Defining methods.

25.2 OBJECTSIN PLAIN LISP 359

(defmacro undefmeth ((name &optional (type :primary)) obj)
‘(setf (,(symb ’meth- type) (gethash ’,name ,obj))
nil))

Figure 25.8: Removing methods.

In a more complicated example, suppose we have defined a backup method for
thefilesystem object:

(setq filesystem (obj))

(defmeth (backup :before) filesystem (fs)
(format t "Remember to mount the tape.~%"))

(defmeth (backup) filesystem (fs)
(format t "Oops, deleted all your files."%")
’done)

(defmeth (backup :after) filesystem (fs)
(format t "Well, that was easy. %"))

The normal sequence of callswill be asfollows:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.

DONE

L ater we want to know how long backupstake, so we definethefollowing around-
method:

(defmeth (backup :around) filesystem (fs)
(time (call-next)))

Now whenever backup is called on achild of filesystem (unless more specific
around-methods intervene) our around-method will be caled. It calls the code
that would ordinarily runin acall to backup, but withinacall to time. Thevaue
returned by time will be returned as the value of the call to backup:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.

Elapsed Time = .01 seconds
DONE

360 OBJECT-ORIENTED LISP

Once we are finished timing the backups, we will want to remove the around-
method. That can be done by calling undefmeth (Figure 25.8), which takes the
same first two arguments as defmeth:

(undefmeth (backup :around) filesystem)

Another thing we might want to alter is an object’s list of parents. But after
any such change, we should also update the list of ancestors of the object and al
its children. So far, we have no way of getting from an object to its children, so
we must also add a children property.

Figure 25.9 contains code for operating on objects parents and children.
Instead of getting at parents and children via gethash, we use the operators
parents and children. The latter is a macro, and therefore transparent to
setf. The former is a function whose inversion is defined by defsetf to be
set-parents, which does everything needed to maintain consistency in the new
doubly-linked world.

To update the ancestors of al the objects in a subtree, set-parents cals
maphier, which is like a mapc for inheritance hierarchies. As mapc calls a
function on every element of a list, maphier calls a function on an object and
all its descendants. Unless they form a proper tree, the function could get called
more than once on some objects. Herethisis harmless, because get-ancestors
does the same thing when called multiple times.

Now we can dter the inheritance hierarchy just by using setf on an object’s
parents:

> (progn (pop (parents patriotic-scoundrel))
(serves patriotic-scoundrel))

COUNTRY

T

When the hierarchy is modified, affected lists of children and ancestors will be
updated automatically. (The children are not meant to be manipulated directly,
but they could be if we defined a set-children analogous to set-parents.)
The last function in Figure 25.9 is obj redefined to use the new code.

As afinal improvement to our system, we will make it possible to specify
new ways of combining methods. Currently, the only primary method that gets
called is the most specific (though it can call othersvia call-next). Instead we
might like to be able to combine the results of the primary methods of each of an
object’s ancestors. For example, suppose that my-orange is a child of orange,
which isachild of citrus. If the props method returns (round acidic) for
citrus, (orange sweet) for orange, and (dented) for my-orange, it would
be convenient to be able to make (props my-orange) return the union of all
thesevalues: (dented orange sweet round acidic).

25.2 OBJECTSIN PLAIN LISP 361

(defmacro children (obj)
‘(gethash ’children ,obj))

(defun parents (obj)
(gethash ’parents obj))

(defun set-parents (obj pars)
(dolist (p (parents obj))
(setf (children p)
(delete obj (children p))))
(setf (gethash ’parents obj) pars)
(dolist (p pars)
(pushnew obj (children p)))
(maphier #’(lambda (obj)
(setf (gethash ’ancestors obj)
(get-ancestors obj)))
obj)
pars)

(defsetf parents set-parents)

(defun maphier (fn obj)
(funcall fn obj)
(dolist (c (children obj))
(maphier fn c)))

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (parents obj) parents)
obj))

Figure 25.9: Maintaining parent and child links.

We could havethisif we allowed methodsto apply some functionto the values
of all the primary methods, instead of just returning the value of the most specific.
Figure 25.10 contains a macro which allows us to define the way methods are
combined, and anew version of run-core-methods which can perform method
combination.

We define the form of combination for a method via def comb, which takes
a method name and a second argument describing the desired combination. Or-

362 OBJECT-ORIENTED LISP

(defmacro defcomb (name op)
‘ (progn
(defprop ,name t)
(setf (get ’,name ’mcombine)
, (case op
(:standard nil)
(:progn ’#’(lambda (&rest args)
(car (last args))))

(t op)))))

(defun run-core-methods (obj name args &optional pri)
(let ((comb (get name ’mcombine)))
(if comb
(if (symbolp comb)
(funcall (case comb (:and #’comb-and)
(tor #’comb-or))
obj name args (ancestors obj))
(comb-normal comb obj name args))
(multiple-value-progl
(progn (run-befores obj name args)
(apply (or pri (rget obj name :primary))
obj args))
(run-afters obj name args)))))

(defun comb-normal (comb obj name args)
(apply comb
(mapcan #’(lambda (a)
(let* ((pm (meth- primary
(gethash name a)))
(val (if pm
(apply pm obj args))))
(if val (list val))))
(ancestors obj))))

Figure 25.10: Method combination.

dinarily this second argument should be a function. However, it can also be one
of :progn, :and, :or, Or :standard. With the former three, primary meth-
ods will be combined as though according to the corresponding operator, while
: standard indicates that we want the traditional way of running methods.

25.2 OBJECTSIN PLAIN LISP 363

(defun comb-and (obj name args ancs &optional (last t))
(if (null ancs)

last
(let ((pm (meth- primary (gethash name (car ancs)))))
(if pm
(let ((new (apply pm obj args)))

(and new
(comb-and obj name args (cdr ancs) new)))
(comb-and obj name args (cdr ancs) last)))))

(defun comb-or (obj name args ancs)
(and ancs
(let ((pm (meth- primary (gethash name (car ancs)))))
(or (and pm (apply pm obj args))
(comb-or obj name args (cdr ancs))))))

Figure 25.11: Method combination (continued).

The central function in Figure 25.10 is the new run-core-methods. If the
method being called has nomcombine property, then the method call proceeds as
before. Otherwise the mcombine of the method is either a function (like +) or a
keyword (like :or). In the former case, the function is just applied to a list of
the values returned by all the primary methods.? In the latter, we use the function
associated with the keyword to iterate over the primary methods.

The operators and and or have to be treated specialy, as in Figure 25.11.
They get special treatment not just because they are special forms, but because
they short-circuit evaluation:

> (or 1 (princ "wahoo"))
1

Herenothingisprinted becausethe or returnsassoon asit seesanon-nil argument.
Similarly, a primary method subject to or combination should never get called if
amore specific method returnstrue. To provide such short-circuiting for and and
or, we use the distinct functions comb-and and comb-or.

To implement our previous example, we would write:

(setq citrus (obj))
(setq orange (obj citrus))

1A more sophisticated version of this code could use reduce to avoid consing here.

364 OBJECT-ORIENTED LISP

(setq my-orange (obj orange))

(defmeth (props) citrus (c) ’(round acidic))
(defmeth (props) orange (o) ’(orange sweet))
(defmeth (props) my-orange (m) ’(dented))

(defcomb props #’(lambda (&rest args) (reduce #’union args)))
after which props would return the union of all the primary method val ues: 2

> (props my-orange)
(DENTED ORANGE SWEET ROUND ACIDIC)

Incidentally, thisexampl e suggests a choicethat you only have when doing object-
oriented programming in Lisp: whether to store information in slots or methods.

Afterward, if we wanted the props method to return to the default behavior,
we just set the method combination back to standard:

> (defcomb props :standard)
NIL

> (props my-orange)
(DENTED)

Note that before- and after-methods only run in standard method combination.
However, around-methods work the same as before.

The program presented in this section is intended as a model, not as a real
foundation for object-oriented programming. It was written for brevity rather
than efficiency. However, it is at least aworking model, and so could be used for
experimentsand prototypes. If you do want to use the program for such purposes,
one minor change would make it much more efficient: don’t calculate or store
ancestor lists for objects with only one parent.

25.3 Classesand Instances

The program in the previous section was written to resemble CLOS as closely as
such asmall program could. By understandingit weareaready afair way towards
understanding cLOS. In the next few sections we will examine cLoS itself.

In our sketch, we made no syntactic distinction between classes and instances,
or between dots and methods. In cLOS, we use the defclass macro to define a
class, and we declare the slotsin alist at the sametime:

2Since the combination function for props calls union, the list elements will not necessarily be
in this order.

25.3 CLASSES AND INSTANCES 365

(defclass circle ()
(radius center))

This expression says that the circle class has no superclasses, and two slots,
radius and center. We can make an instance of the circle class by saying:

(make-instance ’circle)

Unfortunately, we have defined no way of referring to the lots of acircle, so
any instance we make is going to be rather inert. To get at a slot we define an
accessor function for it:

(defclass circle ()
((radius :accessor circle-radius)
(center :accessor circle-center)))

Now if we make an instance of acircle, we can set itsradius and center slots
by using setf with the corresponding accessor functions:

> (setf (circle-radius (make-instance ’circle)) 2)
2

We can do this kind of initialization right in the call to make-instance if we
define the slotsto alow it:

(defclass circle ()
((radius :accessor circle-radius :initarg :radius)
(center :accessor circle-center :initarg :center)))

The: initarg keywordinasl ot definition saysthat thefoll owing argument should
become a keyword parameter in make-instance. The value of the keyword
parameter will becometheinitial value of the dlot:

> (circle-radius (make-instance ’circle
:radius 2
:center ’(0 . 0)))

By declaring an :initform, we can also define slots which initialize them-
selves. Thevisible slot of the shape class

(defclass shape ()
((color :accessor shape-color :initarg :color)
(visible :accessor shape-visible :initarg :visible
:initform t)))

366 OBJECT-ORIENTED LISP

will be set to t by default:

> (shape-visible (make-instance ’shape))
T

If adlot has both an initarg and an initform, the initarg takes precedence when it
is specified:

> (shape-visible (make-instance ’shape :visible nil))

NIL

Slots are inherited by instances and subclasses. If a class has more than
one superclass, it inherits the union of their dots. So if we define the class
screen-circle to be asubclass of both circle and shape,

(defclass screen-circle (circle shape)
nil)

then instances of screen-circle will have four slots, two inherited from each
grandparent. Notethat aclass doesnot haveto create any new dotsof itsown; this
class exists just to provide something instantiable that inheritsfrom both circle
and shape.

The accessors and initargs work for instances of screen-circle just asthey
would for instances of circle or shape:

> (shape-color (make-instance ’screen-circle
:color ’red :radius 3))
RED

We can cause every screen-circle to have some default initial color by
specifying an initform for thisdot inthedefclass:

(defclass screen-circle (circle shape)
((color :initform ’purple)))

Now instances of screen-circle will be purple by default,

> (shape-color (make-instance ’screen-circle))
PURPLE

though it is still possible to initialize the ot otherwise by giving an explicit
:color initarg.

In our sketch of object-oriented programming, instances inherited values di-
rectly from the dots in their parent classes. In CLOS, instances do not have slots
in the same way that classes do. We define an inherited default for instances by
defining aninitform in the parent class. In away, thisis moreflexible, because as
well as being a constant, an initform can be an expression that returns a different
value each timeit is evaluated:

25.3 CLASSES AND INSTANCES 367

(defclass random-dot ()
((x :accessor dot-x :initform (random 100))
(y :accessor dot-y :initform (random 100))))

Each time we make an instance of a random-dot its x- and y-position will be a
random integer between 0 and 99:

> (mapcar #’(lambda (name)
(let ((rd (make-instance ’random-dot)))
(1ist name (dot-x rd) (dot-y rd))))
’(first second third))
((FIRST 25 8) (SECOND 26 15) (THIRD 75 59))

In our sketch, we also made no distinction between slots whose values were
to vary from instance to instance, and those which were to be constant across the
whole class. In cLOS we can specify that some dots are to be shared—that is,
their value is the same for every instance. We do this by declaring the ot to
have :allocation :class. (Thedternativeisfor aslot to have :allocation
:instance, but sincethisisthe default there is no need to say so explicitly.) For
example, if all owls are nocturnal, then we can make the nocturnal dot of the
owl classashared slot, and giveit theinitial value t:

(defclass owl ()
((nocturnal :accessor owl-nocturnal
:initform t
:allocation :class)))

Now every instance of the owl class will inherit this dlot:

> (owl-nocturnal (make-instance ’owl))
T

If we change the “local” value of this dlot in an instance, we are actually atering
the value stored in the class:

> (setf (owl-nocturnal (make-instance ’owl)) ’maybe)
MAYBE

> (owl-nocturnal (make-instance ’owl))

MAYBE

This could cause some confusion, so we might like to make such a slot read-
only. When we define an accessor function for a slot, we create a way of both
reading and writing the dlot’s value. If we want the value to be readable but
not writable, we can do it by giving the slot just a reader function, instead of a
full-fledged accessor function:

368 OBJECT-ORIENTED LISP

(defclass owl ()
((nocturnal :reader owl-nocturnal
:initform t
:allocation :class)))

Now attempts to alter thenocturnal dot of aninstance will generate an error:

> (setf (owl-nocturnal (make-instance ’owl)) nil)
>>Error: The function (SETF OWL-NOCTURNAL) is undefined.

254 Methods

Our sketch emphasized the similarity between slots and methods in a language
which provides lexical closures. In our program, a primary method was stored
and inherited in the same way as a slot value. The only difference between a slot
and amethod was that defining a name as aslot by

(defprop area)

made area a function which would simply retrieve and return a value, while
defining it as amethod by

(defprop area t)

made area a function which would, after retrieving a value, funcall it on its
arguments.

IncLosthefunctional unitsare still called methods, and it is possibleto define
them so that they each seem to be a property of some class. Here we define an
area method for the circle class:

(defmethod area ((c circle))
(* pi (expt (circle-radius c) 2)))

The parameter list for this method saysthat it is afunction of one argument which
appliesto instances of the circle class.
We invoke this method like afunction, just asin our sketch:

> (area (make-instance ’circle :radius 1))
3.14. ..

We can also define methods that take additional arguments:

(defmethod move ((c circle) dx dy)
(incf (car (circle-center c)) dx)
(incf (cdr (circle-center c)) dy)
(circle-center c))

25.4 METHODS 369

If we call this method on an instance of circle, its center will be shifted by
(dx,dy):

> (move (make-instance ’circle :center (1 . 1)) 2 3)
(3 . 4)

The value returned by the method reflects the circle’s new position.

As in our sketch, if there is a method for the class of an instance, and for
superclasses of that class, the most specific one runs. So if unit-circleisa
subclass of circle, with the following area method

(defmethod area ((c unit-circle)) pi)

then this method, rather than the more general one, will run when we call area
onaninstance of unit-circle

When a class has multiple superclasses, their precedencerunsleft to right. By
defining the class patriotic-scoundrel asfollows

(defclass scoundrel nil nil)
(defclass patriot nil nil)
(defclass patriotic-scoundrel (scoundrel patriot) nil)

we specify that patriotic scoundrelsare scoundrel sfirst and patriots second. When
there is an applicable method for both superclasses,

(defmethod self-or-country? ((s scoundrel))
’self)

(defmethod self-or-country? ((p patriot))
>country)

the method of the scoundrel class will run:

> (self-or-country? (make-instance ’patriotic-scoundrel))
SELF

The examples so far maintain the illusion that cLos methods are methods of
some object. In fact, they are something more general. In the parameter list of
the move method, the element (¢ circle) is called a specialized parameter; it
saysthat this method applies when the first argument to move is an instance of the
circleclass. InacLosmethod, morethan oneparameter canbespecialized. The
following method has two specialized and one optional unspecialized parameter:

370 OBJECT-ORIENTED LISP

(defmethod combine ((ic ice-cream) (top topping)
&optional (where :here))
(append (list (name ic) ’ice-cream)
(list ’with (name top) ’topping)
(list ’in ’a
(case where
(:here ’glass)
(:to-go ’styrofoam))
’dish)))

Itisinvoked when thefirst two argumentsto combine areinstancesof ice-cream
and topping, respectively. If we define some minimal classes to instantiate

(defclass stuff () ((name :accessor name :initarg :name)))
(defclass ice-cream (stuff) nil)
(defclass topping (stuff) nil)

then we can define and run this method:

> (combine (make-instance ’ice-cream :name ’fig)
(make-instance ’topping :name ’olive)
:here)

(FIG ICE-CREAM WITH OLIVE TOPPING IN A GLASS DISH)

When methods specialize more than one of their parameters, it is difficult
to continue to regard them as properties of classes. Does our combine method
belong to the ice-cream class or the topping class? In cLOS, the model of
objects responding to messages simply evaporates. This model seems natural so
long as we invoke methods by saying something like:

(tell obj ’move 2 3)

Then we are clearly invoking the move method of obj. But once we drop this
syntax in favor of afunctional equivalent:

(move obj 2 3)

then we have to define move so that it dispatches on its first argument—that is,
looks at the type of the first argument and calls the appropriate method.

Once we havetaken this step, the question arises: why only allow dispatching
on the first argument? CLOS answers. why indeed? In cLOS, methods can
specialize any number of their parameters—and not just on user-defined classes,
but on Common Lisp types,® and even on individual objects. Hereis a combine
method that appliesto strings:

30r more precisely, on the type-like classes that cLOs defines in parallel with the Common Lisp
type hierarchy.

25.4 METHODS 371

(defmethod combine ((sl string) (s2 string) &optional int?)
(let ((str (concatenate ’string si1 s2)))
(if int? (intern str) str)))

Which means not only that methods are no longer properties of classes, but that
we can use methods without defining classes at all.

> (combine "I am not a " "cook.")
"I am not a cook."

Here the second parameter is specialized on the symbol palindrome:

(defmethod combine ((sl sequence) (x (eql ’palindrome))
&optional (length :odd))
(concatenate (type-of s1)
si
(subseq (reverse sl)
(case length (:odd 1) (:even 0)))))

This particular method makes palindromes of any kind of sequence elements: 4

> (combine ’(able was i ere) ’palindrome)
(ABLE WAS I ERE I WAS ABLE)

At this point we no longer have object-oriented programming, but something
more general. CLOS is designed with the understanding that beneath methods
thereis this concept of dispatch, which can be done on more than one argument,
and can be based on more than an argument’sclass. When methods are built upon
this more general notion, they become independent of individual classes. Instead
of adhering conceptually to classes, methods now adhere to other methods with
the same name. In cLos such aclump of methodsis called ageneric function. All
our combine methodsimplicitly define the generic function combine.

We can define generic functions explicitly with the defgeneric macro. It
is not necessary to call defgeneric to define a generic function, but it can be a
convenient place to put documentation, or some sort of safety-net for errors. Here
we do both:

(defgeneric combine (x y &optional z)
(:method (x y &optional z)
"I can’t combine these arguments.")
(:documentation "Combines things."))

“4In one (otherwise excellent) Common Lisp implementation, concatenate will not accept cons
asitsfirst argument, so this call will not work.

372 OBJECT-ORIENTED LISP

Since the method given here for combine doesn’'t specialize any of its arguments,
it will be the one called in the event no other method is applicable.

> (combine #’expt "chocolate")
"I can’t combine these arguments."

Before, this call would have generated an error.

Generic functions impose one restriction that we don’t have when methods
are properties of objects: when all methods of the same name get joined into one
generic function, their parameter lists must agree. That’'s why all our combine
methods had an additional optional parameter. After defining the first combine
method to take up to three arguments, it woul d have caused an error if we attempted
to define another which only took two.

CLos requires that the parameter lists of all methods with the same name be
congruent. Two parameter lists are congruent if they have the same number of
required parameters, the same number of optional parameters, and compatible use
of &rest and &key. Theactual keyword parametersaccepted by different methods
need not be the same, but defgeneric can insist that all its methods accept a
certain minimal set. The following pairs of parameter lists are all congruent:

(x) (a)

(x &optional y) (a &optional b)
(x y &rest z) (a b &rest c)
(x y &rest z) (a b &key c d)

and the following pairs are not:

(x) (a b)

(x &optional y) (a &optional b c)
(x &optional y) (a &rest b)

(x &key x y) (a)

Redefining methods is just like redefining functions. Since only required
parameters can be specialized, each method is uniquely identified by its generic
function and the types of its required parameters. If we define another method
with the same specializations, it overwritesthe original one. So by saying:

(defmethod combine ((x string) (y string)
&optional ignore)
(concatenate ’string x " + " y))

we redefine what combine does when its first two arguments are strings.
Unfortunately, if instead of redefining a method we want to remove it, there
is no built-in converse of defmethod. Fortunately, thisis Lisp, so we can write

255 METHODS 373

(defmacro undefmethod (name &rest args)
(if (consp (car args))
(udm name nil (car args))
(udm name (list (car args)) (cadr args))))

(defun udm (name qual specs)
(let ((classes (mapcar #’(lambda (s)
‘(find-class ’,s))
specs)))
¢ (remove-method (symbol-function ’,name)
(find-method (symbol-function ’,name)
’,qual
(1ist ,@classes)))))

Figure 25.12: Macro for removing methods.

one. The details of how to remove a method by hand are summarized in the
implementation of undefmethod in Figure 25.12. We use this macro by giving
arguments similar to those we would give to defmethod, except that instead of
giving a whole parameter list as the second or third argument, we give just the
class-names of the required parameters. So to remove the combine method for
two strings, we say:

(undefmethod combine (string string))

Unspecialized arguments are implicitly of class t, so if we had defined a method
with required but unspecialized parameters:

(defmethod combine ((fn function) x &optional y)
(funcall fn x y))

we could get rid of it by saying
(undefmethod combine (function t))

If we want to remove a whole generic function, we can do it the same way we
would remove the definition of any function, by calling fmakunbound:

(fmakunbound ’combine)

374 OBJECT-ORIENTED LISP

25.5 Auxiliary Methods and Combination

Auxiliary methods worked in our sketch basically as they do in cLos. So far we
have seen only primary methods, but we can also have before-, after- and around-
methods. Such auxiliary methods are defined by putting a qualifying keyword
after the method name in the call to defmethod. If we define a primary speak
method for the speaker class asfollows:

(defclass speaker nil nil)

(defmethod speak ((s speaker) string)
(format t "“A" string))

Then caling speak with an instance of speaker just printsthe second argument:

> (speak (make-instance ’speaker)

"life is not what it used to be")
life is not what it used to be
NIL

By defining a subclass intellectual which wraps before- and after-methods
around the primary speak method,

(defclass intellectual (speaker) nil)

(defmethod speak :before ((i intellectual) string)
(princ "Perhaps "))

(defmethod speak :after ((i intellectual) string)
(princ " in some sense"))

we can create a subclass of speakers which always have the last (and the first)
word:

> (speak (make-instance ’intellectual)

"life is not what it used to be")
Perhaps life is not what it used to be in some sense
NIL

In standard method combination, the methods are called as described in our
sketch: all the before-methods, most specific first, then the most specific primary
method, then all the after-methods, most specific last. So if we define before- or
after-methods for the speaker superclass,

255 AUXILIARY METHODS AND COMBINATION 375

(defmethod speak :before ((s speaker) string)
(princ "I think "))

they will get called in the middle of the sandwich:

> (speak (make-instance ’intellectual)

"life is not what it used to be")
Perhaps I think life is not what it used to be in some sense
NIL

Regardless of what before- or after-methods get called, the value returned by the
generic function is the value of the most specific primary method—in this case,
thenil returned by format.

This changesif there are around-methods. If one of the classesin an object’s
family tree hasan around-method—or more precisely, if thereisan around-method
specialized for the arguments passed to the generic function—the around-method
will get called first, and therest of the methodswill only runif the around-method
decides to let them. Asin our sketch, an around- or primary method can invoke
the next method by calling a function: the function we defined as call-next is
incLos caled call-next-method. Thereisaso anext-method-p, analogous
to our next-p. With around-methodswe can define another subclass of speaker
which is more circumspect:

(defclass courtier (speaker) nil)

(defmethod speak :around ((c courtier) string)
(format t "Does the King believe that "A? " string)
(if (eq (read) ’yes)
(if (next-method-p) (call-next-method))
(format t "Indeed, it is a preposterous idea.”%"))
>bow)

When the first argument to speak is an instance of the courtier class, the
courtier’stongue is now guarded by the around-method:

> (speak (make-instance ’courtier) "kings will last")
Does the King believe that kings will last? yes

I think kings will last

BOW

> (speak (make-instance ’courtier) "the world is round")
Does the King believe that the world is round? no
Indeed, it is a preposterous idea.

BOW

376 OBJECT-ORIENTED LISP

Note that, unlike before- and after-methods, the value returned by the around-
method is returned as the value of the generic function.

Generaly, methods are run as in this outline, which is reprinted from Sec-
tion 25.2:

1. The most specific around-method, if thereis one.

2. Otherwise, in order:

(&) All before-methods, from most specific to least specific.
(b) The most specific primary method.
(c) All after-methods, from least specific to most specific.

This way of combining methods is called standard method combination. Asin
our sketch, it is possible to define methods which are combined in other ways:
for example, for ageneric function to return the sum of al the applicable primary
methods.

In our program, we specified how to combine methods by calling def comb.
By default, methods were combined as in the outline above, but by saying, for
example,

(defcomb price #’+)

we could cause the function price to return the sum of all the applicable primary
methods.

In cLos thisis called operator method combination. Asin our program, such
method combination can be understood asiif it resulted in the evaluation of aLisp
expression whose first element was some operator, and whose arguments were
calls to the applicable primary methods, in order of specificity. If we defined the
price generic function to combine values with +, and there were no applicable
around-methods, it would behave as though it were defined:

(defun price (&rest args)
(+ (apply (most specific primary method) args)

(apply (least specific primary method) args)))

If there are applicable around-methods, they take precedence, just as in standard
method combination. Under operator method combination, an around-method can
still call the next method via call-next-method. However, primary methods
can no longer use call-next-method. (Thisis a difference from our sketch,
where we left call-next available to such methods.)

25.6 CLOS AND LISP 377

In cLos, we can specify the type of method combination to be used by a
generic function by giving the optional :method-combination argument to
defgeneric:

(defgeneric price (x)
(:method-combination +))

Now the price method will use + method combination. If we define some classes
with prices,

(defclass jacket nil nil)
(defclass trousers nil nil)
(defclass suit (jacket trousers) nil)

(defmethod price + ((jk jacket)) 350)
(defmethod price + ((tr trousers)) 200)

then when we ask for the price of an instance of suit, we get the sum of the
applicable price methods:

> (price (make-instance ’suit))
550

The following symbols can be used as the second argument to defmethod or in
the :method-combination option to defgeneric:

+ and append 1list max min nconc or progn

By calling def ine-method-combination you can define other kinds of method
combination; see CLTL2, p. 830.

Once you specify the method combination a generic function should use, all
methods for that function must use the same kind. Now it would cause an error if
we tried to use another operator (or :before or : after) as the second argument
inadefmethod for price. If we do want to change the method combination of
price we must remove the whole generic function by calling fmakunbound.

256 CLOSandLisp

CLos makes a good example of an embedded language. This kind of program
usualy brings two rewards:

1. Embedded languages can be conceptually well-integrated with their envi-
ronment, so that within the embedded language we can continueto think of
programsin much the same terms.

378 OBJECT-ORIENTED LISP

2. Embedded languages can be powerful, because they take advantage of all
the things that the base language already knows how to do.

CLos wins on both counts. It is very well-integrated with Lisp, and it makes
good use of the abstractions that Lisp has already. Indeed, we can often see Lisp
through cLos, the way we can see the shapes of objects through a sheet draped
over them.

It is no accident that we usually speak to cLos through a layer of macros.
Macrosdotransformation, and cLosisessentially aprogram which takesprograms
built out of object-oriented abstractions, and translates them into programs built
out of Lisp abstractions.

As the first two sections suggested, the abstractions of object-oriented pro-
gramming map so neatly onto those of Lisp that one could almost call the former
aspecial case of thelatter. The objects of object-oriented programming can easily
be implemented as Lisp objects, and their methods as lexical closures. By taking
advantage of such isomorphisms, we were able to provide a rudimentary form of
object-oriented programming in just a few lines of code, and a sketch of cLos in
afew pages.

CLosisagreat deal larger and more powerful than our sketch, but not so large
asto disguiseitsroots as an embedded language. Takedefmethod asan example.
Though cLTL2 does not mention it explicitly, cLos methods have all the power of
lexical closures. If we define several methods within the scope of some variable,

(let ((transactions 0))

(defmethod withdraw ((a account) amt)
(incf transactions)
(decf (balance a) amt))

(defmethod deposit ((a account) amt)
(incf transactions)
(incf (balance a) amt))

(defun transactions ()
transactions))

then at runtime they will share accessto the variable, just like closures. Methods
can do this because, underneath the syntax, they are closures. In the expansion
of adefmethod, its body appears intact in the body of a sharp-quoted lambda-
expression.

Section 7.6 suggested that it was easier to conceive of how macros work than
what they mean. Likewise, the secret to understanding CLOS is to understand how
it maps onto the fundamental abstractions of Lisp.

25.7 WHEN TO OBJECT 379

25.7 When to Object

The object-oriented style provides several distinct benefits. Different programs
need these benefits to varying degrees. At one end of the continuum there are
programs—simulations, for example—which are most naturally expressed in the
abstractions of object-oriented programming. At the other end are programs
written in the object-oriented style mainly to make them extensible.

Extensibility is indeed one of the great benefits of the object-oriented style.
Instead of being a single monoalithic blob of code, a program is written in small
pieces, each labelled with its purpose. So later when someone else wants to
modify the program, it will be easy to find the part that needs to be changed. If
we want to change the way that objects of type ob are displayed on the screen, we
change the display method of the ob class. If we want to make a new class of
objects like obs but different in afew respects, we can create a subclass of ob; in
the subclass, we change the properties we want, and all the rest will be inherited
by default from the ob class. And if we just want to make a single ob which
behaves differently from the rest, we can create anew child of ob and modify the
child’'s propertiesdirectly. If the program was written carefully to begin with, we
can make all these types of modifications without even looking at the rest of the
code. From this point of view, an object-oriented program is a program organized
like a table: we can change it quickly and safely by looking up the appropriate
entry.

Extensibility demands the least from the object-oriented style. In fact, it
demands so little that an extensible program might not need to be object-oriented
at al. If the preceding chapters have shown anything, they have shown that Lisp
programs do not have to be monolithic blobs of code. Lisp offers awhole range
of optionsfor extensibility. For example, you could quiteliterally have aprogram
organized like atable: aprogram which consisted of a set of closuresstored in an
array.

If it's extensibility you need, you don’t have to choose between an “object-
oriented” and a “traditional” program. You can give a Lisp program exactly
the degree of extensibility it needs, often without resorting to object-oriented
techniques. A dotinaclassis aglobal variable. And just as it is inelegant to
use a global variable where you could use a parameter, it could be inelegant to
build aworld of classes and instances when you could do the same thing with less
effort in plain Lisp. With the addition of cLos, Common Lisp has become the
most powerful object-oriented language in widespread use. Ironicaly, it is also
the language in which object-oriented programming is least necessary.

380 OBJECT-ORIENTED LISP

Appendix: Packages

Packages are Common Lisp’sway of grouping code into modules. Early diaects
of Lisp contained a symbol-table, called the oblist, which listed all the symbols
read so far by the system. Through a symbol’s entry on the oblist, the system had
access to things like its value and its property list. A symbol listed in the oblist
was said to be interned.

Recent dialects of Lisp have split the concept of the oblist into multiple
packages. Now a symbol is not merely interned, but interned in a particular
package. Packages support modularity because symbols interned in one package
are only accessible in other packages (except by cheating) if they are explicitly
declared to be so.

A package is a kind of Lisp object. The current package is always stored
in the global variable *package*. When Common Lisp starts up, the current
package will be the user package: either user (in cLTL1 implementations), or
common-1lisp-user (in CLTL2 implementations).

Packages are usually identified by their names, which are strings. To find the
name of the current package, try:

> (package-name *packagex)
"COMMON-LISP-USER"

Usualy a symboal is interned in the package that was current at the time
it was read. To find the package in which a symbol is interned, we can use
symbol-package:

> (symbol-package ’foo)
#<Package "COMMON-LISP-USER" 4CD15E>

381

382 APPENDIX

The return value here is the actual package object. For future use, let's give foo
avaue

> (setq foo 99)
99

By cdling in-package we can switch to a new package, creating it if
necessary:!

> (in-package ’mine :use ’common-lisp)
#<Package "MINE" 63390E>

At this point there should be eerie music, becausewe arein adifferent world: foo
hereis not what it used to be.

MINE> foo
>>Error: FOO has no global value.

Why did this happen? Because the foo we set to 99 above is a distinct symbol
fromfoo hereinmine.? Torefertotheorigina £ oo fromoutsidethe user package,
we must prefix the package name and two colons:

MINE> common-lisp-user::foo
99

So different symbols with the same print-name can coexist in different pack-
ages. There can be one foo in package common-1isp-user and another foo in
packagemine, and they will be distinct symbols. In fact, that's partly the point of
packages:. if you'rewriting your program in a separate package, you can choose
names for your functions and variables without worrying that someone will use
the same name for something else. Even if they use the same name, it won't be
the same symbol.

Packages also provide ameans of information-hiding. Programs must refer to
functions and variables by their names. If you don’t make a given name available
outside your package, it becomes unlikely that code in another package will be
able to use or modify what it refersto.

In programsit’s usually bad style to use package prefixes with double colons.
By doing so you are violating the modularity that packages are supposed to
provide. If you have to use a double colon to refer to a symboal, it's because
someone didn’t want you to.

1In older implementations of Common Lisp, omit the :use argument.
2Some implementations of Common Lisp print the package name before the toplevel prompt
whenever we are not in the user package. Thisis not required, but it is a nice touch.

PACKAGES 383

Usually one should only refer to symbols which have been exported. By
exporting a symbol from the package in which it is interned, we cause it to be
visible to other packages. To export a symbol we call (you guessed it) export:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)

T

> (setq bar 5)

5

Now when we return to mine, we can refer to bar with only a single colon,
becauseit is a publicly available name:

> (in-package ’mine)
#<Package "MINE" 63390E>
MINE> common-lisp-user:bar
5

By importing bar into mine we can go one step further, and make mine actually
share the symbol bar with the user package:

MINE> (import ’common-lisp-user:bar)
T

MINE> bar

5

After importing bar we can refer to it without any package qualifier at all. The
two packages now share the same symbol; there can’t be adistinct mine : bar.

What if there already was one? In that case, the call to import would have
caused an error, as we seeif we try to import foo:

MINE> (import ’common-lisp-user::foo)
>>Error: FOO is already present in MINE.

Before, when we tried unsuccessfully to evaluate foo inmine, we thereby caused
asymbol foo to beinterned there. It had no global value and therefore generated
an error, but the interning happened simply as a consequence of typing its name.
So now when wetry toimport foo intomine, thereisaready asymbol therewith
the same name.

We can al so import symbolsen masse by defining one packageto use another:

MINE> (use-package ’common-lisp-user)
T

384 APPENDIX

Now all symbols exported by the user package will automatically be imported by
mine. (If foo had been exported by the user package, this call would also have
generated an error.)

As of cLTL2, the package containing the names of built-in operators and
variables is called common-1isp instead of 1isp, and new packages no longer
use it by default. Since we used this package in the call to in-package which
created mine, al of Common Lisp's nameswill be visible here:

MINE> #’cons
#<Compiled-Function CONS 462A3E>

You're practically compelled to make any new package use common-1isp (or
some other package containing Lisp operators). Otherwise you wouldn’'t even be
able to get out of the new package.

As with compilation, operations on packages are not usually done at the
toplevel like this. More often the calls are contained in source files. Generally
it will suffice to begin a file with an in-package and a defpackage. (The
defpackage macroisnew in CLTL2, but some older implementations provideit.)
Here is what you might put at the top of a file containing a distinct package of
code:

(in-package ’my-application :use ’common-lisp)

(defpackage my-application
(:use common-lisp my-utilities)
(:nicknames app)
(:export win lose draw))

This will cause the code in the file—or more precisely, the namesin the file—to
beinthe packagemy-application. Aswell ascommon-1isp, this package uses
my-utilities, S0 any symbolsexported thence can appear without any package
prefix in thefile.

Themy-application packageitself exportsjust three symbols: win, lose,
and draw. Since the call to in-package gave my-application the nickname
app, codein other packages will be able to refer to them ase.g. app: win.

The kind of modularity provided by packages is actually a bit odd. We have
modules not of objects, but of names. Every package that uses common-1isp
imports the name cons, because common-1isp includes a function with that
name. But in consequence a variable called cons would also be visible every
package that used common-1isp. And the same thing goes for Common Lisp’s
other name-spaces. If packagesare confusing, thisisthe main reasonwhy; they're
not based on objects, but on names.

PACKAGES 385

Things having to do with packages tend to happen at read-time, not runtime,
which can lead to some confusion. The second expression we typed:

(symbol-package ’foo)

returned the valueit did becausereading the query created the answer. To evaluate
this expression, Lisp had to read it, which meant interning foo.
As another example, consider this exchange, which appeared above:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)

Usually two expressions typed into the toplevel are equivalent to the same two
expressions enclosed within asingle progn. Not in this case. If wetry saying

MINE> (progn (in-package ’common-lisp-user)
(export ’bar))
>>Error: MINE::BAR is not accessible in COMMON-LISP-USER.

we get an error instead. This happens because the whole progn expression is
processed by read before being evaluated. When read is called, the current
package is mine, SO bar is taken to be mine:bar. It is asif we had asked to
export this symbol, instead of common-1isp-user:bar, from the user package.

The way packages are defined makes it a nuisance to write programs which
use symbols as data. For example, if we definenoise asfollows:

(in-package ’other :use ’common-lisp)
(defpackage other
(:use common-lisp)
(:export noise))

(defun noise (animal)
(case animal
(dog ’woof)
(cat ’meow)
(pig ’oink)))

then if we call noise from another package with an unqualified symbol as an
argument, it will usually fall off the end of the case clausesand returnnil:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise ’pig)

NIL

386 APPENDIX

That's because what we passed as an argument was common-1isp-user:pig(no
offense intended), while the case key is other:pig. To make noise work as
one would expect, we would have to export all six symbols used within it, and
import them into any package from which weintended to call noise.

Inthiscase, we could evadethe problem by using keywordsinstead of ordinary
symbols. If noise had been defined

(defun noise (animal)
(case animal
(:dog :woof)
(:cat :meow)
(:pig :o0ink)))

then we could safely call it from any package:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise :pig)

:0INK

Keywords are like gold: universal and self-evaluating. They are visible every-
where, and they never haveto be quoted. A symbol-drivenfunctionlikedefanaph
(page 223) should nearly always be written to use keywords.

Packages are a rich source of confusion. This introduction to the subject has
barely scratched the surface. For all the details, see cLTL2, Chapter 11.

Notes

This section is aso intended as abibliography. All the books and papers listed here should
be considered recommended reading.

\Y

viii

18

21

Foderaro, John K. Introduction tothe Special Lisp Section. CACM 34, 9 (September
1991), p. 27.

Thefinal Prolog implementation is 94 lines of code. It uses 90 lines of utilitiesfrom
previous chapters. The ATN compiler adds 33 lines, for atotal of 217. Since Lisp
has no formal notion of aline, thereis alarge margin for error when measuring the
length of aLisp programin lines.

Steele, Guy L., Jr. Common Lisp: the Language, 2nd Edition. Digital Press, Bedford
(MA), 1990.

Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley, Reading (MA),
1975, p. 16.

Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, 1985.

Moreprecisely, we cannot definearecursivefunction with asinglelambda-expression.
We can, however, generate a recursive function by writing a function to teke itself
as an additional argument,

(setq fact
#’ (lambda (f n)
(if (=n 0)
1
(* n (funcall £ £ (- n 1))))))

and then passing it to afunction that will return aclosure in which original function
iscalled on itself:

387

388

23

24

26

31

NOTES

(defun recurser (fn)
#’ (lambda (&rest args)
(apply fn fn args)))

Passing fact to this function yields aregular factorial function,

> (funcall (recurser fact) 8)
40320

which could have been expressed directly as:

((lambda (f) #’(lambda (n) (funcall f f n)))
#’ (lambda (f n)
(if (=n 0)
1
(¢ n (funcall £ £ (- n 1))))))

Many Common Lisp userswill find 1abels or alambda more convenient.

Gabriel, Richard P. Performance and Standardization. Proceedings of the First
International Workshop on Lisp Evolution and Standardization, 1988, p. 60.

Testing triangle in one implementation, Gabriel found that “even when the C
compiler is provided with hand-generated register allocation information, the Lisp
code is 17% faster than an iterative C version of thisfunction.” His paper mentions
severa other programs which ran faster in Lisp than in C, including one that was

42% faster.

If you wanted to compile all the named functions currently loaded, you could do it

by calling compall:

(defun compall ()
(do-symbols (s)
(when (fboundp s)

(unless (compiled-function-p (symbol-function s))

(print s)
(compile s)))))

Thisfunction also prints the name of each function asit is compiled.

You may be able to see whether inline declarations are being obeyed by calling
(disassemble ’foo), which displays some representation of the object code of
function foo. Thisis also one way to check whether tail-recursion optimization is

being done.
One could imagine nreverse defined as.

(defun our-nreverse (1st)
(if (null (cdr 1st))
1st
(progl (nr2 1st)
(setf (cdr 1lst) nil))))

NOTES 389

(defun nr2 (1st)
(let ((c (cdr 1st)))
(progl (if (null (cdr c))
c
(nr2 c))
(setf (cdr c) 1st))))

Good design always puts a premium on economy, but there is an additional reason
that programs should be dense. When a program is dense, you can see more of it at
once.

People know intuitively that design is easier when one has a broad view of one's
work. This is why easel painters use long-handled brushes, and often step back
from their work. Thisiswhy generals position themselves on high ground, even if
they are thereby exposed to enemy fire. And it iswhy programmers spend alot of
money to look at their programs on large displays instead of small ones.

Dense programs make the most of one's field of vision. A general cannot shrink a
battle to fit on a table-top, but Lisp allows you to perform corresponding feats of
abstraction in programs. And the more you can see of your program at once, the
more likely it isto turn out as a unified whole.

Thisis not to say that one should make one's programs shorter at any cost. If you
take al the newlines out of afunction, you can fit it on one line, but this does not
make it easier to read. Dense code means code which has been made smaller by
abstraction, not text-editing.

Imagine how hard it would be to program if you had to look at your code on a
display half the size of the one you're used to. Making your code twice as dense
will make programming that much essier.

Steele, Guy L., Jr. Debunking the “Expensive Procedure Call” Myth or, Procedu-
ra Call Implementations Considered Harmful or, LAMBDA: The Ultimate GoTo.
Proceedings of the National Conference of the ACM, 1977, p. 157.

For reference, here are simpler definitions of some of the functions in Figures 4.2
and 4.3. All are substantially (at least 10%) slower:

(defun filter (fn 1st)
(delete nil (mapcar fn 1lst)))

(defun filter (fn 1st)
(mapcan #’(lambda (x)
(let ((val (funcall fn x)))
(if val (list val))))
1st))

(defun group (source n)
(if (endp source)
nil
(let ((rest (nthcdr n source)))
(cons (if (consp rest) (subseq source 0 n) source)
(group rest n)))))

390 NOTES

(defun flatten (x)
(mapcan #’(lambda (x)
(if (atom x) (mklist x) (flatten x)))
x))

(defun prune (test tree)
(if (atom tree)
tree
(mapcar #’(lambda (x)
(prune test x))
(remove-if #’(lambda (y)
(and (atom y)
(funcall test y)))
tree))))

49 Written asit is, find2 will generate an error if it runs off the end of a dotted list:

> (£find2 #’o0ddp ’(2 . 3))
>>Error: 3 is not a list.

CLTL2 (p. 31) says that it is an error to give a dotted list to a function expecting a
list. Implementations are not required to detect this error; some do, some don't.
The situation gets murky with functions that take sequences generally. A dotted
list is a cons, and conses are sequences, so a strict reading of cLTL would seem to
require that

(find-if #’o0ddp ’(2 . 3))

return nil instead of generating an error, because find-if is supposed to take a
sequence as an argument.

Implementations vary here. Some generate an error anyway, and othersreturnnil.
However, even implementations which follow the strict reading in the case above
tend to deviate in e.g. the case of (concatenate ’cons ’(a . b) ’(c . d)),
whichislikely toreturn (a ¢ . d) instead of (a c).

In this book, the utilities which expect lists expect proper lists. Those which operate
on sequences will accept dotted lists. However, in general it would be asking for
trouble to pass dotted lists to any function that wasn't specifically intended for use
on them.

66 If we could tell how many parameters each function had, we could write aversion of
compose sothat, inf og, multiplevaluesreturned by g would becomethe correspond-
ing arguments to f. In cLTL2, the new function function-lambda-expression
returns a lambda-expression representing the original source code of a function.
However, it has the option of returning nil, and usually does so for built-in func-
tions. What we really need is a function that would take a function as an argument
and return its parameter list.

73 A version of rfind-if which searches for whole subtrees could be defined as
follows:

95

106

NOTES 391

(defun rfind-if (fn tree)
(if (funcall fn tree)
tree
(if (atom tree)
nil
(or (rfind-if fn (car tree))
(and (cdr tree) (rfind-if fn (cdr tree)))))))

The function passed as the first argument would then have to apply to both atoms
and lists:

> (rfind-if (fint #’atom #’oddp) ’(2 (3 4) 5))

3

> (rfind-if (fint #’listp #’cddr) ’(a (b c d e)))
(B CDE)

McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. Lisp 1.5 Programmer’s Manual, 2nd Edition. MIT Press, Cam-
bridge, 1965, pp. 70-71.

When Section 8.1 saysthat acertain kind of operator can only be written asamacro,
it means, can only bewritten by the user asamacro. Specia formscan do everything
macros can, but there is no way to define new ones.

A special form is so called because its evaluation is treated as a special case. Inan
interpreter, you could imagine eval asabig cond expression:

(defun eval (expr env)
(cond ...
((eq (car expr) ’quote) (cadr expr))

(t (apply (symbol-function (car expr))
(mapcar #’(lambda (x)
(eval x env))

(cdr expr))))))

Most expressions are handled by the default clause, which says to get the function
referred to in the car, evaluate all the arguments in the cdr, and return the result of
applying the former to the latter. However, an expression of the form (quote x)
should not be treated thisway: the whole point of aquote is that its argument is not
evaluated. So eval hasto have one clause which deals specifically with quote.
Language designers regard special forms as something like constitutional amend-
ments. It isnecessary to have acertain number, but the fewer the better. The special
formsin Common Lisp arelisted in CLTL2, p. 73.

The preceding sketch of eval is inaccurate in that it retrieves the function before
evaluating thearguments, whereasin Common Lisp theorder of thesetwo operations
is deliberately unspecified. For a sketch of eval in Scheme, see Abelson and
Sussman, p. 299.

392

115

126

128

131

NOTES

It's reasonable to say that a utility function is justified when it pays for itself in
brevity. Utilities written as macros may have to meet a stricter standard. Reading
macro calls can be more difficult than reading function calls, because they can
violate the Lisp evaluation rule. In Common Lisp, this rule says that the value of
an expression isthe result of calling the function named in the car on the arguments
given in the cdr, evaluated |eft-to-right. Since functions all follow thisrule, it isno
more difficult to understand acall to £ind2 than to find-books (page 42).

However, macros generally do not preserve the Lisp evaluation rule. (If one did,
you could have used a function instead.) In principle, each macro defines its own
evaluation rule, and the reader can’'t know what it is without reading the macro’s
definition. So a macro, depending on how clear it is, may have to save much more
than its own length in order to justify its existence.

The definition of for given in Figure 9.2, like several others defined in this book,
is correct on the assumption that the initforms in ado expression will be evaluated
left-to-right. CLTL2 (p. 165) says that this holds for the stepforms, but says nothing
one way or the other about the initforms.

Thereis good cause to believe that thisis merely an oversight. Usually if the order
of some operations is unspecified, cLTL will say so. And there is no reason that
the order of evaluation of the initforms of a do should be unspecified, since the
evaluation of a let isleft-to-right, and so is the evaluation of the stepformsin do
itself.

Common Lisp's gentemp islike gensym except that it interns the symbol it creates.
Like gensym, gentemp maintains an internal counter which it uses to make print
names. |If the symbol it wants to create already exists in the current package, it
increments the counter and tries again:

> (gentemp)
T1

> (setq t2 1)
1

> (gentemp)
T3

and so tries to ensure that the symbol created will be unique. However, it is still
possible to imagine name conflictsinvolving symbols created by gentemp. Though
gentemp can guarantee to produce a symbol not seen before, it cannot foresee what
symbols might be encountered in the future. Since gensyms work perfectly well
and are always safe, why use gentemp? Indeed, for macros the only advantage of
gentemp is that the symbols it makes can be written out and read back in, and in
such cases they are certainly not guaranteed to be unique.

The capture of function names would be a more serious problem in Scheme, due to
its single name-space. Not until 1991 did the Scheme standard suggest any official
way of defining macros. Scheme's current provision for hygienic macros differs
greatly from defmacro. For details, and a bibliography of recent research on the
subject, see the most recent Scheme report.

137

158

180

198

199

213

217

NOTES 393

Miller, Molly M., and Eric Benson. Lisp Style and Design. Digital Press, Bedford
(MA), 1990, p. 86.

Instead of writing mvpsetq, it would be cleaner to define an inversion for values.
Then instead of

(mvpsetq (w x) (values y z) ...)
we could say
(psetf (values w x) (values y z) ...)

Defining an inversion for values would also render multiple-value-setq un-
necessary. Unfortunately, as things stand in Common Lisp itisimpossible to define
such an inversion; get-setf-method won't return more than one store variable,
and presumably the expansion function of psetf wouldn’t know what to do with
themiif it did.

One of the lessons of setf isthat certain classes of macros can hide truly enormous
amounts of computation and yet leave the source code perfectly comprehensible.
Eventually setf may be just one of a class of macros for programming with
assertions.

For example, it might be useful to have a macro insist which took certain ex-
pressions of the form (predicate . arguments), and would make them true if they
weren't already. As setf hasto betold how to invert references, this macro would
have to be told how to make expressions true. In the general case, such amacro call
might amount to a call to Prolog.

Gelernter, David H., and Suresh Jagannathan. Programming Linguistics. MIT
Press, Cambridge, 1990, p. 305.

Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, San Mateo (CA), 1992, p. 856.

Theconstant least-negative-normalized-double-float anditsthreecousins
have the longest names in Common Lisp, with 38 characters each. The operator
with the longest name is get-setf-method-multiple-value, with 30.

The following expression returns a list, from longest to shortest, of all the symbols
visible in the current package:

(let ((syms nil))
(do-symbols (s)
(push s syms))
(sort syms
#’ (lambda (x y)
(> (length (symbol-name x))
(length (symbol-name y))))))

As of cLTL2, the expansion function of a macro is supposed to be defined in the
environment where the defmacro expression appears. This should makeit possible
to give propmacro the cleaner definition:

394

238

244

244

NOTES

(defmacro propmacro (propname)
¢ (defmacro ,propname (obj)
‘(get ,obj ’,propname)))

But cLTL2 does not explicitly state whether the propname form originally passed to
propmacro ispart of thelexical environment in which the inner defmacro occurs.
In principle, it seems that if color were defined with (propmacro color), it
should be equivalent to:

(let ((propname ’color))
(defmacro color (obj)
‘(get ,obj ’,propname)))

or

(let ((propname ’color))
(defmacro color (obj)
(list ’get obj (list ’quote propname))))

However, in at least some CLTL2 implementations, the new version of propmacro
does not work.

IncLTL1, the expansion function of amacro was considered to be defined in the null
lexical environment. So for maximum portability, macro definitions should avoid
using the enclosing environment anyway.

Functions like match are sometimes described as doing unification. They don't,
quite; match will successfully match (£ 7x) and 7x, but those two expressions
should not unify.

For a description of unification, see: Nilsson, Nils J. Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, New York, 1971, pp. 175-178.

It's not really necessary to set unbound variables to gensyms, or to call gensym? at
runtime. The expansion-generating code in Figures 18.7 and 18.8 could be written
to keep track of the variables for which binding code had already been generated. To
do this the code would have to be turned inside-out, however: instead of generating
the expansion on the way back up the recursion, it would have to be accumulated
on the way down.

A symbol like ?x occurring in the pattern of an if-match aways denotes a new
variable, just as asymbol in the car of alet binding clause does. So athough Lisp
variables can be used in patterns, pattern variables from outer queries cannot—you
can use the same symbol, but it will denote a new variable. To test that two lists
have the same first element, it wouldn’t work to write:

(if-match (?x . 7restl) 1lsti
(if-match (?x . ?rest2) 1st2
7x))

Inthis case, the second ?x isanew variable. If both 1st1 and 1st2 had at |east one
element, this expression would always return the car of 1st2.

However, since you can use (non-7ed) Lisp variablesin the pattern of an if-match,
you can get the desired effect by writing:

254

258

266

267

273

NOTES 395

(if-match (?x . 7restl) 1lsti
(let ((x 7x))
(if-match (x . 7rest2) 1lst2
7x)))

The restriction, and the solution, apply to the with-answer and with-inference
macros defined in Chapters 19 and 24 as well.

If it were a problem that “unbound” pattern variables were nil, you could have
them bound to a distinct gensym by saying (defconstant unbound (gensym))
and then replacing the line

“(,v (binding ’,v ,binds)))
inwith-answer with:
‘(,v (aif2 (binding ’,v ,binds) it unbound))

Scheme was invented by Guy L. Steele Jr. and Gerald J. Sussman in 1975. The
language is currently defined by: Clinger, William, and Jonathan A. Rees (Eds.).
Revised* Report on the Algorithmic Language Scheme. 1991.

This report, and various implementations of Scheme, were at the time of printing
available by anonymous FTP from altdorf.ai.mit.edu:pub.

As another example of the technique presented in Chapter 16, here isthe derivation
of the defmacro template within the definition of =defun:

(defmacro fun (x)
¢ (=fun *cont* ,x))

(defmacro fun (x)
(let ((fn ’>=fun))
‘(,fn *cont* ,x)))

‘(defmacro ,name ,parms
(let ((fn ’,f))
‘(,fn *cont* ,,Qparms)))

‘(defmacro ,name ,parms
‘(,’,f *contx ,,Q@parms))

If you wanted to see multiple return values in the toplevel, you could say instead:

(setq *cont*
#’ (lambda (&rest args)
(if (cdr args) args (car args))))

This example is based on one given in. Wand, Mitchell. Continuation-Based
Program Transformation Strategies. JACM 27, 1 (January 1980), pp. 166.

396

273

292

293

298

303

NOTES

A program to transform Scheme code into continuation-passing style appears in:
Steele, Guy L., J. LAMBDA: The Ultimate Declarative. MIT Artificial Intelligence
Memo 379, November 1976, pp. 30-38.

These implementations of choose and fail would be clearer in T, a diaect of
Scheme which has push and pop, and alows define in non-toplevel contexts:

(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)
(fail)
(call-with-current-continuation
(lambda (cc)
(push *paths*
(lambda () (cc (choose (cdr choices)))))

(car choices)))))

(call-with-current-continuation
(lambda (cc)
(define (fail)
(if (null? *paths*)
(cc failsym)
((pop *paths*))))))

For more on T, see: Rees, Jonathan A., Norman |. Adams, and James R. Meehan.
The T Manual, 5th Edition. Yale University Computer Science Department, New
Haven, 1988.

The T manual, and T itself, were at the time of printing available by anonymous FTP
fromhing.lcs.mit.edu:pub/t3.1.

Floyd, Robert W. Nondeterministic Algorithms. JACM 14, 4 (October 1967),
pp. 636-644.

The continuation-passing macros defined in Chapter 20 depend heavily on the
optimization of tail calls. Without it they may not work for large problems. For
example, at the time of printing, few computers have enough memory to allow the
Prolog defined in Chapter 24 to run the zebra benchmark without the optimization
of tail calls. (Warning: some Lisps crash when they run out of stack space.)

It's aso possible to define a depth-first correct choose that works by explicitly
avoiding circular paths. Hereisadefinitionin T:

(define *paths* ())
(define failsym ’@)
(define *choice-pts* (make-symbol-table))

(define-syntax (true-choose choices)
‘(choose-fn ,choices ’,(generate-symbol t)))

305

NOTES 397

(define (choose-fn choices tag)
(if (null? choices)
(fail)
(call-with-current-continuation
(lambda (cc)
(push *pathsx*
(lambda () (cc (choose-fn (cdr choices)
tag))))
(if (mem equal? (car choices)
(table-entry *choice-pts* tag))
(fail)
(car (push (table-entry *choice-pts* tag)
(car choices))))))))

In this version, true-choose becomes a macro. (The T define-syntax is like
defmacro except that the macro nameis put in the car of the parameter list.) This
macro expands into a call to choose-fn, a function like the depth-first choose
defined in Figure 22.4, except that it takes an additional tag argument to identify
choice-points. Each value returned by a true-choose is recorded in the global
hash-table *choice-pts*. If agiven true-choose isabout to return avalueit has
aready returned, it failsinstead. Thereisno need to change fail itself; we can use
the fail defined on page 396.

This implementation assumes that paths are of finite length. For example, it would
allow path asdefined in Figure22.13 to find apath from a to e in the graph displayed
in Figure 22.11 (though not necessarily adirect one). But the true-choose defined
above wouldn't work for programs with an infinite search-space:

(define (guess x)
(guess-iter x 0))

(define (guess-iter x g)
(if (= x g
g
(guess-iter x (+ g (true-choose ’(-1 0 1))))))

With true-choose defined as above, (guess n) would only terminate for non-
positive n.

How we define a correct choose aso depends on what we call a choice point. This
version treats each (textual) call to true-choose as a choice point. That might
be too restrictive for some applications. For example, if two-numbers (page 291)
used this version of choose, it would never return the same pair of numbers twice,
evenif it was called by several different functions. That might or might not be what
we want, depending on the application.

Note also that this version isintended for use only in compiled code. In interpreted
code, the macro call might be expanded repeatedly, each time generating a new
gensymed tag.

Woods, William A. Transition Network Grammars for Natural Language Analysis.
CACM 3, 10 (October 1970), pp. 591-606.

398

312

323

325

349

NOTES

The original ATN system included operators for manipulating registers on the stack
whilein asub-network. These could easily be added, but thereisalso amore general
solution: to insert a lambda-expression to be applied to the register stack directly
into the code of an arc body. For example, if the node mods (page 316) had the
following line inserted into the body of its outgoing arc,

(defnode mods
(cat n mods/n
((lambda (regs)
(append (butlast regs) (setr a 1 (last regs)))))
(setr mods *)))

then following the arc (however deep) would set the the topmost instance of the
register a (the one visible when traversing the topmost ATN) to 1.

If necessary, it would be easy to modify the Prolog to take advantage of an existing
database of facts. The solution would beto make prove (page 336) anested choose:

(=defun prove (query binds)
(choose
(choose-bind b2 (lookup (car query) (cdr query) binds)
(=values b2))
(choose-bind r *rules*
(=funcall r query binds))))

To test quickly whether there is any match for a query, you could use the following
macro:

(defmacro check (expr)
‘(block nil
(with-inference ,expr
(return t))))

The examples in this section are trandated from ones given in: Sterling, Leon, and
Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, 1986.

The lack of a distinct name for the concepts underlying Lisp may be a serious
barrier to the language's acceptance. Somehow one can say “We need to use C++
because we want to do object-oriented programming,” but it doesn’t sound nearly as
convincing to say “We need to use Lisp because we want to do Lisp programming.”
To administrative ears, this sounds like circular reasoning. Such ears would rather
hear that Lisp’s value hinged on a single, easily understood concept. For years we
have tried to oblige them, with little success. Lisp has been described as a “list-
processing language,” alanguage for “symbolic computation,” and most recently, a
“dynamic language.” None of these phrases captures more than a fraction of what
Lispisabout. When retailed through college textbooks on programming languages,
they become positively misleading.

Effortsto sum up Lispin asingle phrase are probably doomed to failure, because the
power of Lisp arises from the combination of at least five or six features. Perhaps

352

NOTES 399

we should resign ourselves to the fact that the only accurate name for what Lisp
offersisLisp.

For efficiency, sort doesn't guarantee to preserve the order of sequence elements
judged equal by the function given as the second argument. For example, a valid
Common Lisp implementation could do this:

> (let ((v #((2 . a) (3 .Db) (1 .¢c) (1. AN
(sort (copy-seq v) #’< :key #’car))
#((1 . D) (1 .C (2.4 (3. B)

Note that the relative order of the first two elements has been reversed.

The built-in stable-sort provides a way of sorting which won't reorder equal
elements:

> (let ((v #((2 . a) 3 .Db) (1 .¢c) (1 . AN
(stable-sort (copy-seq v) #’< :key #’car))
#((1 .0 (1 .D) (2.4 3. B)

It is a common error to assume that sort works like stable-sort. Another
common error is to assume that sort is nondestructive. In fact, both sort and
stable-sort can ater the sequence they are told to sort. If you don’t want thisto
happen, you should sort a copy. The call to stable-sort in get-ancestors is
safe because the list to be sorted has been freshly made.

400 NOTES

| ndex

aand 191
abbrev 214
abbrevs 214
abbreviations 213
Abelson, Harold 18
Abelson, Julie 18
ablock 193
Abrahams, Paul W. 391
:accessor 365
accumulators 23, 47, 394
acond 191
acond?2 198, 239
Adams, Norman |. 396
after 50
aif 191
aif2 198
alambda 193
Algol 8
allf 169
:allocation 367
always 227
alrec 205
anaphora—see macros, anaphoric
ANsSI Common Lispix
antecedent 322
append

Prolog implementation 331
appendl 45
apply 13

with macros 110

on &rest parameters 137

=apply 267
arch
Lispas8
bottom-up program as 4
architects 284
Armstrong, Louis vii
artificial intelligence 1
asetf 223
assignment
macros for 170
order of 177
paralel 96
in Prolog 343
and referential transparency 198
see also: generalized variables
assoc 196
ATNs 305
arc types 311
correctness of 312
destructive operationsin 313
like functional programs 316
for natural language 305
nondeterminism in 308
operations on register stack 398
order of arcs 308
recursion in 306
registers of 306, 312
represented as functions 309
tracing 309
atrec 210

augmented transition networks—see ATNS

402

Autocad 1,5
automata theory 292
avg 182

awhen 191

awhen2 198
awhile 191
awhile2 198

backtraces 111

backtracking 292

backquote () 84
in ATNS 307
nested 214, 217, 395

bad-reverse 29

barbarians 283

Basic 30, 33

battlefield 8

before 50

Benson, Eric 137

best 52

Bezier curves 185

=bind 267

binding 239

binding lists 239

bindings, atering 107

blackboards 281

block 154
implicit 131, 155

block-names 131

body (of expressions) 87, 91, 87

body (of arule) 322

&body 87

bookshops 41

bottom-up design v, 3, 321
and functional arguments 42
and incremental testing 38
and shape of programs 4
multilayer 321

bound—see variables, bound

break-loop 56

brevity viii, 43

bricks, furniture made of 117

Brooks, Frederick P. 5

C 388
C++398

INDEX

call-next-method 200, 375
sketch of 358
call-with-current-continuation
(call/cc) 260
at toplevel 292
capital expenditures 43
capture 118
avoiding with gensyms 128
avoiding with packages 130
avoiding by prior evaluation 125
of block names 131
detecting potential 121
free symbol capture 119
avoiding 125
of function names 131, 392
intentional 190, 267, 313
macro argument capture 118
of tags 131
case 15
>case 152
case-sensitivity 331
chains of closures 76, 269
Chocoblobs 298
choose 287
extent of 291
choose
Common Lisp version 295
Scheme version 293
choose-bind 295
chronologica backtracking 292
classes
defining 364
see also: superclasses
Clinger, William 395
CLOS 364
as an embedded language 349, 377
see also: classes, generic functions,
methods, dots
closed world assumption 249
closures 17, 62, 76
CcLTL—see Common Lisp: the Language
code-walkers 237, 273
Common Lisp: the Language ix
Common Lisp
case-sensitivity of 331
definition of ix

differences between versions
compilation of closures 25
complement 62
defpackage 384
destructuring-bind 93
dynamic-extent 150
environment of expanders 96, 393
no expansion in compiled code 136

INDEX

function-lambda-expression 390

gensym-counter 129
-if-not deprecated 62
ignore-errors 147
inversions from defun 179
Lisp package 384
name of user package 381
redefining built-in operators 131,
199
&rest parameters not fresh 137
symbol-macros 205
with-slots 236
see also: CLOS, series
evaluation rule 392
long namesin 393
vs. Scheme 259
Common Lisp Object System—seeCLOS
common-1lisp 384
common-lisp-user 381
compall 388
compilation 24
bounds-checking during 186
computation during 109, 181, 197,
254, 335
of embedded languages 116, 254
errors emerging during 139
inline 26, 109, 110
testing 388
of local functions 23, 25, 81, 346
of macro calls 83, 101, 136
of networks 79
restrictions on 25
senses of 346
of queries 254
see also: tail-recursion optimization
compile 24, 116, 388
compile-file 25
compiled-function-p 24

403

complement 62
compose 66
composition—see functions,
composition of
conci 45
conclf 170, 174
concf 170
concnew 170
conditionals 108, 150
condlet 146
congruent parameter lists 372
consequent 322
consing
avoiding 31, 150, 197, 363
constitutional amendments 391
constraints 332
cont 266
context
and referential transparency 199
see aso: environments; macros,
context-creating
continuations 258
destructive operations in 261, 313
cost of 284
seealso: call-with-current-con-
tinuation
continuation-passing macros 266
use in multiprocessing 283
use in nondeterministic choice 296
restrictions on 270
and tail-recursion optimization 298
continuation-passing style (cps) 273
cookies 184
copy-list 71, 206
copy-tree 71, 210
courtiers 375
cut 337
with fail 342
green 339
red 339
in Lisp 298
cut 301

databases
caching updates to 179
locks on 148

404

natural language interfaces to 306
querieson 246
representation of 247
with Prolog 398
dbind 232
def! 64
defanaph 223
defclass 364
defdelim 228
defgeneric 371
define-modify-macro 168
defmacro 82, 95
defpackage 384
defprop 354
defun 10, 113
defining inversions with 179
=defun 267
defsetf 178
delay 211
delete-if 64
density of source code 59, 389
destruc 232
destructive operations 31, 64
destructuring
on arrays 234
on instances 236
on lists 230
in macros 93
and reference 236
on sequences 231
on structures 235
destructuring-bind 93, 213, 230
differences 207
disassemble 388
dispatching 370, 371
do 98
implicit block in 131
multiple-valued version 162
order of evaluation in 392
do-file 199
do-symbols 388, 393
do-tuples/c 156
do-tuples/o 156
dox 97
multiple-valued version 159
dolist 94

INDEX

generalization of 156
Dolphin Seafood 219
dotted lists 70, 390
duplicate 50
dynamic extent 127, 150
dynamic languages 398
dynamic scope 16

Edwards, Daniel J. 391
elt 244
Emacs—see Gnu Emacs
embedded |anguages 7, 188, 246
ATNS as 309
benefits of 110,116, 246, 377
borderline of 246
compilation of 116
not quite compilers 346
implementation of 116
for multiprocessing 275
Prolog as 321
query languages as 246
see aso: CLOS
end-of-file (eof) 197, 225
English 306
environment
argument 95
interactive 8
of macro expanders 96, 393
of macro expansions 108
null 96, 278, 394
error 148
error-checking 45
eval
explicit 34, 163, 197, 278
on macroexpansions 92
sketch of 391
evaluation
avoiding 151, 181
lazy 211
order of
in Common Lisp 135
in Scheme 259
sketch of 391
evaluation rule 392
evenp 14
evolution

design by 1

of Lisp 158

of programming languages 8
expander code 99
expansion code 99
explode 58
exploratory programming 1, 284
export 383
:export 384
expt 32
extensibility 5

of object-oriented programs 16, 379
extent, dynamic 127, 150

_f 173, 222
factions 167
factorials 343, 387
fail 287
fail
Common Lisp version 295
Scheme version 293
failure 195
fboundp 388
fif 67
filter 47
simpler version 389
find2 50
evolution of 41
find-if 41, 195
sketch of 206
version for trees 73
finished programs 285
fint 67
flatten 47, 72, 210
simpler version 389
Floyd, Robert W. 293
fmakunbound 373
fn 202, 229
Foderaro, John K. v
for 154
force 211
Fortran 8
free—see variables, free
fullbind 324
fun x
fun 67

INDEX

405

funcall 13, 259
=funcall 267
function calls, avoiding
by inline compilation 26
with macros 109
by tail recursion 23
functional interfaces 35
functional programs 28
amost 35
and bottom-up programming 37
from imperative ones 33
shape of 30
functions
as arguments 13, 42, 177
constant 226
closures of 17, 62, 76
use in nondeterministic choice 296
stack allocation of 150
combined with macros 141, 149, 266
compiled 24
compoasition of 66, 201, 228
asadatatype9
defining 10
filleting 115
generating recursive 68, 204
generic—see generic functions
internal 172
interpreted 24
aslists 27
literal 11
recursive 21, 193
local 21
VS. macros 109
names of 11, 213
as properties 15
redefining built-in 131, 174
asreturn values 17, 61, 76, 201
set operations on 67, 201
with state 18, 65
tail-recursive 23
transforming into macros 102
undefining 373
see also: compilation; defgeneric;
defun; labels
function-lambda-expression 390

406

Gabriel, Richard P. 23
garbage
avoiding—see consing, avoiding
collection 8, 81
generaized variables 107, 165
meaning of 179
see also: inversions
generic functions 371
defining 371
removing 373
see also: methods
gensym 128
to indicate failure 197
as unbound 244, 330
gensym? 243
gensym-counter 129
gentemp 392
Gelernter, David H. 198
get 63
gethash 196
recursive version 350
get-setf-method 171
gift-shops, airport 278
Gnu Emacs 1, 5
go 100, 155
gods 8
gold 386
good-reverse 30
group 47
simpler version 389

Hart, Timothy P. 391
hash tables 65, 247, 350
head 322

hiding implementation details 216, 382

hygienic macros 392

ice-cream 370

ice-skating 33

i3 150

if-match 242
ignore-errors 147

Igor 289

imperative programming 33
import 383

in 152

INDEX

incf 171

generalization of 173
incremental testing 37
indexing 249
inheritance

single 196

of slots 366

multiple 366

sketch of 351

in-if 152
:initarg 365
:initform 365
in-package 382
inq 152
instances 365
intellectuals 374
interactive development 37, 316
interactive environment 8
intercourse, lexical 108
Interleaf 1,5
intern 128, 136, 266
interning 128, 136, 381
intersection 207
intersections 207
inversions

asymmetric 179

defining 178

see also: generalized variables
iteration

macros for 108, 154

vs. nondeterministic choice 291, 325

without loops 264, 325

Jagannathan, Suresh 198
jazz vii
joiner 62

joke, practical—see Nitzberg, Mark
keywords 386

labels 21

lambda 11

=lambda 267
lambda-expressions 11, 21
last 45

last1 45

INDEX 407

Latin 306 macro-characters—see read-macros
lawyers 298 macros 82
let 144,199 as abbreviations 213
letx* 172 access 167, 216
lengths of programs 387 anaphoric 189
Levin, Michael I. 391 defining automatically 218
lexical scope 16 for distinguishing failure from fal-
life, meaning of 197 sity 195
lions 37 for generating recursive functions
Lisp 204
1595 multiple-valued 198

defining features of 1, 8, 349, 398
integration with user programs 110
slowness of 285
speed of 388
see d'so Common Lisp, Scheme, T
lists
accumulating 47
as binary trees 70
as code 116
decreased role of 44
disambiguating returnvalueswith 196
dotted 390
asfacts 247
flat—see flatten
interleaving 160
operating on end of 170
quoted 37
recursers on 68, 204
astrees 262
uses for 70
list processing 44, 398
locality 36
logic programs 334
longer 47
simpler version 389
loop 154
loops
interrupting 154
see dso: iteration
1lrec 69

McCarthy, John 1, 391
mac 92

macroexpand 91
macroexpand-1 91

and referential transparency 198
see also: call-next-method
and apply 110
applications of 111
arguments to 107
for building functions 201
calsinvertible 166, 216
clarity 99, 233
and cLOs 378
for computation at compile-time 181
context-creating 143
combined with functions 141, 149,
266
compiled 83, 101, 136
complex 96
defining 82
efficiency 99
environment argument to 95
environment of expander 96, 393
environment of expansion 108
errorsin
modifying arguments 137
modifying expansions 139
non-functional expanders 136
nonterminating expansion 139
number of evaluations 133, 167
order of evaluation 135
see also: capture
expansion of 83
in compiled code 136
multiple 136, 138
non-terminating 139
testing 92
time of 83
from functions 102

408 INDEX

vs. functions 109
hygienic 392
justification of 392
macro-defining 213, 266
parameter lists 93
position in source code 102, 266
as programs 96
proportion in a program 117
recursion in 139
redefining 101, 138
built-in 199
simple 88
skeletons of 121
stylefor 99
testing 91
unique powers of 106
when to use 106
see aso: backquote, read-macros,
symbol-macros
mainframes 348
make-dispatch-macro-character 226
make-instance 365
make-hash-table 65
make-string 58
map-> 54
mapO-n 54
mapl-n 54
mapa-b 54, 228
mapc 163
mapcan 41, 46
nondestructive version 55
sketch of 55
mapcar 13
version for multiple lists 55
version for trees 55
mapcars 54
mapcon 176, 218
mappend 54
mappend-mklist idiom 160
mapping functions 53
mark 301
match 239
matching—see pattern-matching
maxmin 207
Meehan, James R. 396

member 88

misuse of 151
Prolog implementation 332
returns a cdr 50
Miller, Molly M. 137
member-if 196
memq 88
memoizing 65, 174
message-passing 350
vs. Lisp syntax 353
methods
adhere to one another 369
after- 374
sketch of 357
around- 375
sketch of 356
auxiliary 374
sketch of 356
before- 374
sketch of 357
of classes 368
without classes 371
as closures 378
redefining 372
removing 373
sketch of 359
isomorphic to slots 368
speciaization of 369
on objects 371
on types 370
see also: generic functions
method combination
and
sketch of 363
operator 376
sketch of 362
or
sketch of 363
progn
sketch of 362
standard 376
sketch of 358
:method-combination 377
Michelangelo 11
mines 264
mklist 45, 160
mkstr 58

INDEX

modularity 167, 381, 382
de Montaigne, Michel 2
most 52
most-of 182
mostn 52
moving parts 4
multiple inheritance—see inheritance,
multiple
multiple values 32
to avoid side-effects 32
to distinguish failurefrom falsity 196,
239
in generalized variables 172
iteration with 158
receiving—seemultiple-value-bind
returning—see values
multiple-value-bind 32
leftover parametersnil 234
multiprocessing 275
mvdo 162
mvdox 159
mvpsetq 161
Mythical Man-Month, The 5

name-spaces 12, 205, 259, 273, 384, 392
natural language—see ATNS
nconc 31, 35, 137
negation
of facts 249
in Prolog 325
in queries 252
networks
representing 76, 79
next-method-p 375
sketch of 358
:nicknames 384
nif 150
nil
default block name 131
forbidden in case clauses 153
multiple roles of 51, 195
nilf 169
Nitzberg, Mark—see joke, practical
nondeterministic choice 286
Common Lisp implementation 295
need for CPS macros 296

409

restrictions on 297
andtail-recursion optimization 298,
396
Scheme implementation 293
appearance of foresight 289
breadth-first 303
correct 302
depth-first 292
in ATNS 308
nonterminating 293
in Prolog 334
in functional programs 286
vs. iteration 291, 325
optimizing 298
and parsing—see ATNS
and search 290
see adso: choosg, fail
Norvig, Peter 199
nreverse 31
sketch of 388
nthmost 183

object-oriented programming
dangers of 379
defining features of 350
like distributed systems 348
and extensibility 16, 379
name of 349
inplain Lisp 349
see also: C++; classes; CLOS; generic
functions; inheritance; methods;
message-passing; slots; Smalltalk
on-cdrs 205
on-trees 210
open systems 6
open-coding—see compilation, inline
orthogonality 63

xpackagex* 125, 381

packages 381
aberrations involving 384
avoiding capture with 130, 131
creating 382
current 381
using distinct 131, 382
inheriting symbols from 384

410

nicknames for 384
switching 382
user 381
see dso: intern; interning
parsers, nondeterministic—see ATNS
paths, traversing 155
pat-match 242
pattern-matching 186, 238
pattern variables 238
phrenology 30
planning 2
pointers 76
pools 313
popn 173
pop-symbol 220
position 49
xprint-array* 245
print-circle 70
print-names 57, 129, 382
processes 275
instantiation of 278
scheduling of 279
state of 278
proclaim 23, 45
productivity 5
programming languages
battlefield of 8
embedded—see embedded languages
expressive power of vii
extensible 5
high-level 8
seedso: Algal; Basic; C; C++; Com-
mon Lisp; Fortran; Lisp; Pro-
log; Scheme; Smalltalk; T
Prolog 321
assignment in 343
calling Lisp from 343
case-sensitivity of 331
conceptua ingredients 321
nondeterminism in 333
programming techniques 332
restrictions on variables 344
rules 329
bodyless 323, 330
implicit conjunction in body 328
left-recursive 334

order of 329

subverting 346

syntax of 331
promises 211
prompt 56
property lists 15, 63, 216
propmacro 216

alternative definition 393
propmacros 216
prune 47

simpler version 389
pruning search trees—see cut
psetq 96

multiple-valued version 161
pull 173, 223
pull-if 173
push-nreverse idiom 47
pushnew 174

queries
complex 249, 335
conditional 191
query languages 249
quicksort 345
quote 84, 391
seedso: ’
quoted lists, returning 37, 139

rapid prototyping 1, 284

of individual functions 24, 48
read 56, 128, 197, 224
read-delimited-list 227
:reader 367
read-eval-print loop 57
read-from-string 58
read-line 56
readlist 56
read-macros 224
recurser 388
recursion

on cdrs 68, 204

in grammars 306

in macros 139, 192

without naming 388

on subtrees 70, 208

tail- 23, 140

reduce 207, 363
Rees, Jonathan A. 395, 396
referential transparency 198
remove-duplicates
sketch of 206
remove-if 14
remove-if-not 40
rep- 324
reread 58
&rest parameters 87
not guaranteed fresh 137
in utilities 174
return 131, 155
return-from 131, 154
return values
functions as—see functions, asreturn
values
multiple—see multiple values
re-use of software 4
reverse 30
rfind-if 73, 210
alternate version 390
rget 351
rich countries 285
rmapcar 54
Rome 283
rotatef 29
rplaca 166
rules
structure of 322
as virtual facts 323
see aso: Prolog, rulesin

Scheme
vs. Common Lisp 259
cond 192
macrosin 392
returning functionsin 62
scope 16, 62
scoundrels, patriotic 352
scrod 219
search trees 265
sequence operators 244
series 55
set 178
set-difference 207

INDEX

411

setf 165
seealso: generaized variables, inver-
sions
set-macro-character 224
setq
destroys referential transparency 198
ok in expansions 100
now redundant 170
Shapiro, Ehud 398
sharp (#) 226
shuffle 161
Side-effects 28
destroy locality 36
in macro expanders 136
mitigating 35
on &rest parameters 137
on quoted objects 37
signum 86
simple? 242
single 45
Sistine Chapel 11
skeletons—see macros, skeletons of
sketches 284
sleep 65
slots
accessor functions for 365
declaring 364
as global variables 379
initializing 365
isomorphic to methods 368
read-only 367
shared 367
Smalltalk 350
some
sketch of 206
sort 14, 352
sortf 176
sorting
of arguments 176
partial 184
see adlso: stable-sort
special 17
specia forms 9, 391
specialization—see methods, specializa-
tion of
speed 23

412

splicing 86
splines—see Bezier curves
split-if 50
sqrt 32
sguash 160
stable-sort 352, 399
stacks
allocation on 150
of ATN registers 312
in continuations 260, 261
use for iteration 264
overflow of 396
Steele, Guy Lewis Jr. ix, 43, 213, 395,
396
Sterling, Leon 398
strings
building 57
matching 231, 244
as vectors 233
Sructureand | nter pretation of Computer
Programs 18
structured programming 100
subseq 244
superclasses
precedence of 369
sketch of 352
Sussman, Gerald Jay 18, 395
symb 58
symbols
building 57
as data 385
exported 383
imported 383
interning—see intern
names of 57, 129, 382
see aso: keywords
symbol-function 12, 388
symbolic computation 398
symbol-macrolet 105, 205, 210
symbol-name 58
symbol-package 381
symbol-value 12, 178
symbol-macros 105, 205, 236, 237
swapping values 29

T 396

tagbody 155
tail-recursion optimization 22
needed with cPS macros 298
testing for 388, 396
taxable operators 32
testing
incremental 37
of macros—see macros, testing
TeX i, 5
tf 169
Theodebert 236
three-valued logic 151
till 154
time 65, 359
times of evaluation 224, 229
toggle 169
top-down design 3
trace 111, 266, 309
transition networks 306
transformation
embedded languages implemented by
116, 241
of macro arguments 107, 112
trec 75
trees 70, 262
cross-products of 265
leaves of 72
recursers on 70
true-choose
breadth-first version 304
T implementation 396
depth-first version 396
truncate 32
ttrav 74
Turing Machines vii
twenty questions 77
typecase 62
type-of 371
typep 243
types
declaration of 23
speciaization on 370
typing 44, 112

undefmethod 373
unification 394

union 206
unspecified order of result 207, 364
unions 207
unspecialized parameters 373
unwind-protect 148
:use 384
user 381
utilities 40
as an investment 43, 392
become languages 113
mistaken argument against 59

var? 239
variable capture—see capture
variables
bound 16
free 16, 121
generalized—seegeneralized variables
global 36, 125, 268, 379
varsym? 239
redefined 335
vectors
for ATN registers 313
creating with backquote 86
matching 231, 244
visual aspects of source code 30, 213,
231
VOUSSOirs 8
values 32
inversion for 393
=values 267

wait 280
Wand, Mitchell 395
Weicker, Jacqueline J. X
when-bind 145
when-bindx* 145
while 154
with-answer 251
redefined 255
with-array 234
with-gensyms 145
with-inference 324
redefined 335, 340
with-matrix 234
with-open-file 147

INDEX

with-output-to-string 58
with-places 237
with-slots 236
with-struct 235

writer's cramp 44

&whole 95

Woods, William A. 305
workstations 348

world, ideal 109

X Windows vi, 5
zebra benchmark 396

#° 10, 226
#(233
#. 75
#: 128
#7 226
#[227
#\ 233
#{ 229
» 225
see also: quote
, 84
,@ 86, 138
: 383
1 382
@ 294
_ 240, 252, 328
¢ see backquote
| 58

413

